## 参考答案

- 1. 模板必须符合哪些基本要求?
- ①形状尺寸准确:模板及支架应保证工程结构和构件各部分形状、尺寸和位置准确,且便于钢筋安装和混凝土浇筑、养护。
- ②足够的承载能力与刚度:应根据施工工况设计,具有足够的承载能力、刚度和整体稳固性。
  - ③构造简单、装拆方便:构造应受力明确,优选轻质、高强、耐用材料,便于周转使用。
  - ④表面平整、接缝严密:接触混凝土的模板表面应平整,接缝严密不漏浆。
  - 2. 模板工程由哪些部分组成?各部分的作用是什么?木模板和组合钢模板各有何特点?
  - (1)模板工程的组成及作用

模板,使新浇筑混凝土成型并养护,达到强度后可拆除的临时结构。

支撑系统(支架):支撑模板,承受混凝土压力和施工荷载,保证模板稳定性。

连接件,连接模板和支撑系统,使模板工程形成整体。

(2)木模板的特点

优点:制作加工方便,适应性强(尤其适合外形复杂的构件),冬期施工保温性好。

缺点: 木材消耗大, 需控制使用以保护资源。

(3)组合钢模板的特点

优点: 组装灵活, 通用性强, 周转次数可达 100 次以上, 安装工效高。

缺点:拆模时易变形,混凝土表面光滑导致附着性差,板块小、拼缝多。

- 3. 简述竖向构件(如柱和墙)、水平构件(如梁和板)的模板构造特点。
- (1) 竖向构件(柱、墙)模板构造特点

柱模板:由侧模、柱箍、底部固定框、清理孔组成,需抵抗新浇筑混凝土侧压力,柱箍间距需合理,底部固定牢靠,拼缝严密。

墙模板:由侧模、内楞、外楞、斜撑、对拉螺栓及撑块组成,对拉螺栓承受侧压力并保持墙厚,斜撑保证垂直度。

(2)水平构件(梁、板)模板构造特点

梁模板:由底模和侧模组成,底模承受竖向荷载,下设支撑;侧模承受侧压力,底部由夹 条固定,顶部由小楞顶住。

板模板:水平支撑包括小楞、大楞或桁架,支撑系统需承受混凝土自重和施工荷载,立杆需稳定,跨度≥4 m 时需起拱(起拱高度为跨度的 1/1000~3/1000)。

4. 模板设计应考虑哪些荷载?

模板设计荷载分为永久荷载和可变荷载:

- ①永久荷载(G)。模板及支架自重( $G_1$ )、新浇筑混凝土自重( $G_2$ )、钢筋自重( $G_3$ )、新浇筑混凝土对模板的侧压力( $G_4$ )。
  - ②可变荷载(Q)。施工人员及设备荷载 $(Q_1)$ 、混凝土下料产生的水平荷载 $(Q_2)$ 、泵送混

凝土附加水平荷载( $Q_3$ )、风荷载( $Q_4$ )。

- 5. 模板工程设计时, 水平模板应考虑哪些永久荷载和可变荷载? 垂直模板应考虑哪些永 久荷载和可变荷载?
  - (1)水平模板(如梁、板)

永久荷载:模板及支架自重 $(G_1)$ 、新浇筑混凝土自重 $(G_2)$ 、钢筋自重 $(G_3)$ 。

可变荷载:施工人员及设备荷载( $O_1$ )。

(2)垂直模板(如柱、墙)

永久荷载:模板及支架自重 $(G_1)$ 、新浇筑混凝土对模板的侧压力 $(G_2)$ 。

可变荷载:混凝土下料产生的水平荷载( $Q_2$ )。

6. 某剪力墙长、高分别为 5700 mm 和 2900 mm, 施工气温 20 ℃, 混凝土塌落度 80 mm, 混凝土浇筑速度为 1.5 m/h, 采用泵管下料方法,采用组合式钢模板, 试问如何选用内、外钢楞?

荷载设计值

1)新浇筑混凝土侧压力标准值

混凝土重力密度  $\gamma_c$  = 24 kN/m³, 混凝土坍落度 80 mm 时  $\beta$  取 0. 85, 初凝时间  $t_0$  = 200/(20+15) = 5. 71h, 浇筑速度 V = 8 m/h $_o$ 

混凝土侧压力标准值:

$$F_1 = 0.28 \gamma ct_0 \beta \sqrt{V} = 0.28 \times 24 \times 5.71 \times 0.85 \times \sqrt{1.5} = 39.95 \text{ kN/m}^2$$
  
 $F_1 = \gamma_2 \times H = 24 \times 2.9 = 69.6 \text{ kN/m}^2$ 

取两者中小值,即  $F = 39.95 \text{ kN/m}^2$ 。

混凝土侧压力的有效压头高度:  $h = F_1/\gamma_c = 39.95/24 = 1.66 \text{ m}_{\odot}$ 

- 2) 混凝土下料时产生的水平荷载标准值(泵管下料取 2 kN/m²):  $F_2$  = 2.0 kN/m²。
- 3)模板侧压力设计值

按荷载基本组合计算承载能力(强度计算)效应设计值:

 $F = 1.35 \times 0.9 \times 39.95 + 1.4 \times 0.9 \times 2 = 51.1 \text{ kN/m}^2$ 

按永久荷载标准值组合计算正常使用(变形计算)效应设计值:

 $F' = 39.95 \text{ kN/m}^2$ 

(2)内外楞布置

根据剪力墙长 5700 mm, 高 2900 mm, 选择宽度为 300 mm 的平面钢模板, 竖向布置, 沿剪力墙长度方向为 19 块。内楞横向布置, 沿高度方向间距 4×750 mm。外楞竖向布置, 沿长度方向间距 5×900 mm+600 mm。

- (3)内楞计算
- ①内楞均布线荷载设计值:

 $q = F \times 0.75 = 51.1 \times 0.75 = 38.33 \text{ kN/m}(用于强度计算);$  $q' = F \times 0.75 = 39.96 \times 0.75 = 29.97 \text{ kN/m}(用于挠度计算)。$ 

②按抗弯强度设计内楞

内楞初步拟定采用 2 根  $60\times40\times2$ . 5 矩形钢管,截面特性值为:  $I=2\times21$ .  $88\times10^4$  mm<sup>4</sup>,  $W=2\times7$ .  $29\times10^3$  mm<sup>3</sup>。

由于内楞两端悬臂长度 $(300 \ mm)$ 与基本跨度 $(900 \ mm)$ 之比为 300/900 = 0.33 < 0.4,则 悬臂端头挠度比基本跨度内挠度小,可按跨度  $900 \ mm$  的三跨连续梁计算。

内楞弯矩:  $M=0.1ql^2=0.1\times38.33\times0.9^2=3.1 \text{ kN} \cdot \text{m}_{\odot}$ 

抗弯强度验算:
$$\sigma = \frac{M}{W} = \frac{3.1 \times 10^6}{2 \times 7.29 \times 10^3} = 212.6 \text{ N/mm}^2 < f_m = 215 \text{ N/mm}^2 \quad (可)_\circ$$

③按挠度验算内楞(按结构表面隐蔽的模板确定变形限制)

$$w = \frac{0.677 \times q' l^4}{100EI} = \frac{0.677 \times 29.97 \times 900^4}{100 \times 2.06 \times 10^5 \times 2 \times 21.88 \times 10^4} = 1.48 \text{ mm} < 900/250 = 3.6 \text{ mm} \quad (\overline{\text{IJ}})_{\odot}$$

(4)外楞及对拉螺栓设计

外楞采用与内楞同规格钢材,即 2 根  $60\times40\times2.5$  矩形钢管,对拉螺栓采用 M20 螺栓,不至于内外楞交点。M20 螺栓净截面面积  $A=245~\mathrm{mm}^2$ ,抗拉强度设计值为 170 N/mm²。

①对拉螺栓的拉力:

 $N=F'\times$ 内楞间距×外楞间距=51.1×0.75×0.9=34.5 kN。

②对拉螺栓的应力:

$$\sigma = \frac{N}{A} = \frac{34.5 \times 10^3}{245} = 140.8 \text{ N/mm}^2 < 170 \text{ N/mm}^2 \quad (\overline{\Pi})_{\circ}$$

对拉螺栓布置符合要求。

7. 某主梁纵向受力钢筋设计为 5 根 HRB400 级(直径 25 mm)的钢筋, 现在因无此钢筋, 仅有 HRB400 级(直径 28 mm、20 mm)两种钢筋,已知梁宽为 350 mm,请问应如何代换?

原钢筋面积: 5 根  $\phi$ 25 的面积  $A_{s1} = 5 \times (\pi \times 25^2/4) = 2454.4 \text{ mm}^2$ 。

等强度代换: HRB400 级钢筋  $f_{y1}$  =  $f_{y2}$  = 400 MPa, 需  $A_{s2} \ge A_{s1}$  。

方案选择:

用直径 28 mm 钢筋: 单根面积 593 mm², 需 2454.  $4/593 \approx 4.14$  根, 取 5 根  $\phi$ 28, 总面积 2965 mm²>2454. 4 mm²。

验算间距: 梁宽 350 mm, 保护层厚度 25 mm, 5 根  $\phi$ 28 的净间距 =  $(350-2\times25-5\times28)/4=40$  mm  $\geq$ 25 mm(满足要求)。

或用直径 20 mm 钢筋: 单根面积 314 mm<sup>2</sup>, 需 2454. 4/314  $\approx$  7. 82 根, 取 8 根  $\phi$ 20, 总面积 2512 mm<sup>2</sup>>2454. 4 mm<sup>2</sup>, 但根数过多可能影响施工, 故优先选用  $\phi$ 28。

8. 设混凝土水灰比为 0.6,已知设计配合比为水泥:砂:石子=260 kg:650 kg:1380 kg,现测得工地砂含水率为 2.5%,石子含水率为 1.5%,试计算施工配合比。若搅拌机的装料容积为 400 L,每次搅拌所需材料又是多少?

施工配合比计算:

水灰比 0.6,设计用水量=260×0.6=156 kg。

砂实际用量=650×(1+2.5%)=666.25 kg。

石子实际用量=1380×(1+1.5%)=1400.7 kg。

实际用水量=156-650×2.5%-1380×1.5%=156-16.25-20.7=119.05 kg。

施工配合比: 水泥:砂:石子:水=260:666.25:1400.7:119.05≈1:2.56:5.39:0.46。

搅拌机装料计算(400 L=0.4 m³):

每立方米材料用量: 水泥 260 kg, 砂 666. 25 kg, 石子 1400.7 kg, 水 119.05 kg。  $0.4 \text{ m}^3$ 用量:

水泥: 260×0.4=104 kg(取 100 kg, 2 袋)。

砂: 666.25×0.4=266.5 kg。

石子: 1400.7×0.4≈560.3 kg<sub>☉</sub>

水: 119.05×0.4≈47.6 kg。

9. 混凝土在运输和浇筑中如何避免产生分层离析?

运输措施:

运输道路平坦,选用搅拌运输车等工具,防止颠簸导致离析;若已离析,浇筑前需二次搅拌。

## 浇筑措施:

自由倾落高度≤2 m, 柱墙结构中自由倾落高度≤3 m, 超过时用串筒、溜槽等辅助下料。 分层浇筑, 每层厚度根据振捣方式确定(如插入式振动器为作用长度的 1.25 倍), 间隙 时间不超过初凝时间。

10. 试述施工缝留设的原则和处理方法。

留设原则:

留在结构剪力较小、施工方便的部位,如:

柱:基础顶面、梁下口、无梁楼盖柱帽下。

梁: 次梁跨中 1/3 跨度处。

墙,门洞口讨梁跨中 1/3 或纵横墙交接处。

处理方法:

凿除已凝固混凝土表面的松弱层并凿毛,用水冲洗湿润(≥24 h)。清除钢筋表面油污、浮锈等杂质。浇筑前铺 10~15 mm 厚水泥浆或同配比砂浆。

11. 大体积混凝土浇筑容易产生温度裂缝的机理是什么?

大体积混凝土水泥水化热集中,内部温度升高快,而表面散热快,形成内外温差(≥25 ℃),导致内部受压、表面受拉。当拉应力超过混凝土抗拉强度时,表面产生裂缝;后期内部降温收缩,若受基底或已浇筑混凝土约束,可能产生贯穿裂缝。

12. 大体积混凝土浇筑防止出现温度裂缝的核心思想是什么?有哪些措施?核心思想:

控制混凝土内外温差≤25 ℃,减小温度应力。

措施.

材料选择:选用水化热低的水泥(如矿渣水泥),掺入粉煤灰等掺合料,减少水泥用量。 施工工艺:降低入模温度(如冰水冷却骨料),分层浇筑(厚度≤400 mm),延缓浇筑速 度。结构内部埋设冷却水管,循环水降温;表面覆盖保温材料(草包、塑料薄膜),减缓散热。 温控监测:布设温度传感器,实时监测内外温差,超限时及时调整保温或降温措施。

13. 为什么要规定冬期施工的"临界强度"? 冬期施工应采取哪些措施? 原因:

混凝土受冻时,若强度未达临界强度,内部游离水结冰膨胀(体积增大8%~9%),产生冰胀应力,导致微裂缝,后期强度无法恢复。临界强度是混凝土受冻后仍能恢复强度的最低

强度,避免冻害。

措施.

材料选择:选用硅酸盐水泥,骨料无冰雪冻块,配合比采用小水灰比、低坍落度。

加热保温: 预热拌合水和骨料, 混凝土出机温度 $\geq 10~$ °、人模温度 $\geq 5~$ °;浇筑后覆盖保温(如电热法、蒸汽养护)。

外加剂: 掺入早强剂、防冻剂,提高早期强度,降低冰点。

14. 混凝土智能养护需要解决的核心问题是什么?

核心问题是实时监测温湿度并自动调控养护条件,包括:

通过传感器实时采集混凝土表面温湿度数据,结合水化热规律分析养护需求。

自动控制喷淋系统或保温设备,维持湿度≥90%、温度适宜,确保水泥水化充分,避免收缩裂缝。

15. 试比较先张法与后张法施工的不同特点及其适用范围。

先张法与后张法在施工工艺和应用场景上有明显区别:

张拉时间: 先张法在浇筑混凝土前张拉预应力筋; 后张法则在混凝土达到设计强度后进行张拉。

锚具使用: 先张法采用临时夹具固定预应力筋, 可重复使用; 后张法使用永久锚具, 锚具留在构件中。

预应力传递方式: 先张法依靠混凝土与钢筋的黏结力传递预应力; 后张法通过锚具直接 传递预应力。

适用范围: 先张法适用于中小型预制构件, 如预制板、梁等; 后张法适用于大型构件或现浇结构, 如桥梁、大跨度梁等。

设备需求: 先张法需要台座和张拉千斤顶; 后张法需要千斤顶、锚具及孔道成型设备。

16. 先张法施工时, 预应力筋什么时候才可放张? 怎样放张?

放张条件:

混凝土强度达设计强度的 75% 以上(采用消除应力钢丝时≥30 MPa)。

放张顺序:

轴心受压构件: 所有预应力筋同时放张。

偏心受压构件: 先放张预压力小的区域, 再放张预压力大的区域, 对称、分阶段放张。

千斤顶放松:缓慢卸荷,适用于单根或成组钢筋。

砂箱或楔块放张,通过砂箱泄砂或楔块松动,均匀放张。

切割法:用砂轮锯切断钢筋,从生产线中间开始,对称放张。

17. 预应力筋张拉常采用哪几种张拉程序?

程序一:  $0\rightarrow 1.05\sigma_{con}$  (持荷 2 min) $\rightarrow \sigma_{con}$ 

目的:减少应力松弛损失,适用于普通松弛预应力筋。

程序二:  $0\rightarrow 1.03\sigma_{con}$ 

目的: 简化操作, 适用于低松弛预应力筋或设计允许时。

18. 某预制梁厂要开发智能化系统建设智慧梁厂,内容涉及人员管理、原材料管理、钢筋智能加工、混凝土拌合站、混凝土智能养护、预应力智能张拉、预应力智能压浆,请综合相关知识制定智慧梁厂智能化系统方案的设计提纲,具体列出各项智能技术需要达到的功能要求。

智慧梁厂智能化系统方案提纲:

人员管理:

功能, RFID 考勤与定位, 实时记录人员、岗位、工时, 进行违规操作预警。

技术:人脸识别、物联网定位,对接 ERP 系统。

原材料管理:

功能,智能库存监测(钢材、水泥、砂石料),自动预警缺货,扫码溯源。

技术: 称重传感器、二维码标签, 对接供应链管理系统。

钢筋智能加工:

功能: BIM 深化设计,自动生成下料单,数控设备(弯曲机、套丝机)自动加工,质量追溯。

技术: BIM+CAM, 遗传算法优化套料, 视觉检测尺寸精度。

混凝土拌合站:

功能:智能配料(精度 ±1%),实时监测坍落度、水胶比,生产数据上传云端。

技术: PLC 控制系统, 物联网传感器, 大数据分析优化配合比。

混凝土智能养护:

功能: 温湿度传感器实时监测, 自动喷淋/保温, 养护周期智能控制。

技术:无线传感器网络,AI 算法预测水化热,循环水系统节能。

预应力智能张拉:

功能: 双控(张拉力+伸长量),同步张拉控制(误差≤1%),数据自动记录。

技术: 伺服液压系统, 物联网传输数据, 云端监控平台。

预应力智能压浆:

功能:真空辅助压浆,压力与流量自动控制,饱满度检测,压浆数据可追溯。

技术: 螺杆泵智能控制, 超声波检测孔道密实度, 区块链存证。