6.8.2 模型设置

在 ABAQUS 建立的 4 个部件的网格模型,如图 6-69 所示。分别为上模(punch)、下模(die)、板料(blank)和压料板(binder)。

图 6-69 各部件及其网络模型

定义属性:

1. 定义材料

定义板料材料:

单击工具箱中的应力应变符号,弹出 Edit Materal 对话框,输入 Name 为 HSS。

单击 General-Density, 定义 Mass Density 为 7.8e-9 t/mm³。

单击 Mechanical-Elasticity→Elastic, 勾选 Use temperature-dependent data, 读者可从附件中 找到 HSS 材料参数. xlsx 文件, 拷贝 Young's Modulus-Poisson's Ratio-Temp 数据到 Data 区域。

单击 Vechanical-Plasticity- Plastic, 勾选 Use temperature-dependent data, 拷贝 Yield Stress-Plastic

Strain-Temp 数据到 Data 区域。单击 Themal-Conductivity, 勾选 Use temperature-dependent data, 拷贝 Conductivity-Temp 数据到 Data 区域。单击 Themal-Specific Heat, 勾选 Use temperature-diependent data, 拷贝 Specific Heat-Temp 数据到 Data 区域。

单击 Mechanical-Expansion, 定义 Expansion Coeffalpha 为 1.3e-5/℃。单击 OK 按钮完成。 定义模具材料:

同理, 创建 Name 为 TOOL 的材料, Mass Density 为 7.9e-9 t/mm³; Young's Modulus 为 210000 MPa, Poisson's Ratio 为 0.275; Yield Stress 为 990 MPa, Plastic Strain 为 0; Specific Heat 为 4.5e8 mj/(t.℃); Conductivity-Temp 数据从附件 TOOL 材料参数.xsx 中拷贝。单击 OK 按钮完成。

2. 定义截面

单击工具箱中的上创建名为 blank 的壳单元; Homogeneous 类型截面,单击 Continue 按钮, Shell thickness 设为 1.6 mm, Material 选择 HSS,如图 6-70 所 示,其余选项为默认。同理,创建名为 tool 的 Solid: Homogeneous 类型截面, Material 选择 TOOL。

3. 指派截面

环境栏显示部件 Part 为 blank 以便 选择。在提示栏中选择 individually,其 他选项为默认。框选板料模型,单击 Done 按钮,弹出 Edit Section Assignment 对话框,如图 6-71 所示, Section 选择 blank, Shell Offset: Definition 选择 Middle surface,单击 OK 按钮,板料模型的 颜色发生变化,表示第 2 步中定义的板

◆ 编辑截面 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	<
名称: blank	
类型:壳/连续壳,均质	
截面积分: ● 分析中 ○ 分析前	
基本信息 高级	
- 厚度	
売的厚度: ● 数值: [1.6	
○ 单元分布: 🛛 🗸 🗸	
○ 结点分布: // / / / / / / / / / / / / / / / / /	
材料: HSS 🗸 💆	
厚度积分规则: • Simpson 〇 高斯	
厚度积分点: 5 € 。	
选项: 🔷	
确定 取消	
图 6-70 板料截面属性定义	

料属性成功指派到板料模型。同理,在环境栏依次显示部件 binder、die、punch,将 Section: tool 属性分别指派给这 3 个部件。

创建装配:

在环境栏切换 Module 到 Assembly。打开 Create Instance 对话框,如图 6-72 所示, Create instances from 默认为 Parts,全选4个 Part, Instance type 选择 Dependent (mesh on part),单击 OK 按钮完成。

💠 编辑截面指派 🛛 🗙 🗙	➡ 创建实例 ×
区域 区域: blank	创建实例从: ● 部件 ○ 模型
截面 截面: blank ダ む 注意: 这里只列出可以应用于选中区域的截面. 类型: 売,均匀的 材料: HSS	部件 binder blank die punch
厚度 指派: ● 来自截面 ○ 来自几何 売偏移 定义: 中面	实例类型 ● 非独立(网格在部件上) ● 独立(网格在实例上) 注意:要改变一个非独立实例网格,您必须编辑其部件的网格.
确定 取消	从其它的实例自动偏移 确定 应用 取消
图 6-71 指派板料截面	图 6-72 创建装配

创建分析步:

1. 分析步

打开 Create Step 对话框, 创建分析步 closure, ProcedureType 选择 General: Dynamic, Temp-disp, Explicit, 单击 Continue 按钮, 弹出 Edit Step 对话框, 如图 6-73 所示。Time period 设为 0.0135, Nlgeom 选择 On, 其余选项为默认, 单击 OK 按钮完成。同理, 创建分析步 form, Procedure Type 仍选择 General: Dynamic, Temp-disp, Explicit, Time period 设为 0.05.

-		
编辑分析步		×
名称: closure1		
类型:动力,温度-位移,显式		
基本信息 增量 质量缩放 其它		
描述: 0.0135		
时间长度: 1		
几何非线性:开		
确定	取消	

图 6-73 创建 closure 分析步

2. 场变量

修改默认场变量, Step 选择 closure, 单击 Continue 按钮, 弹出 Edit Field Output Request 对话框, 如图 6-74 所示。Frequency 选择 Evenly spaced time intervals, interval 设为 50, Output Variables 选择方式为 Select from list below; 分别在 Stresses、Strains、Displacement/Velocity/Acceleration、Thermal 和 Volume/Thickness/Coordinates 中选择 S、PEEO、U、NT 和 STH 作为输出项。

创建相互作用:

在环境栏切换 Module 到 Interaction

过程介绍:热冲压成形过程同时包括热传导、热对流和热辐射3种换热形式。板料为热源,板料的热量分别传递到上模、下模和压料板,同时高温板料和周围空气会产生对流换热,还伴有热辐射,而传递到模具的热量被模具内冷却水道中流动的水流带走。

1. 相互作用属性

打开 Create Interaction Property 对话框, 定

💠 编辑	场输出请求	×
名称:	F-Output-1	
分析步:	closure	
步骤:	动力,温度-位移,显式	
作用域:	整个模型 🕗 🗌 仅限于外部	
频率:	均匀时间间隔 🛛 间隔: 50	
定时:	近似时间的输出 🗸	
輸出疫	量	
∩ "Л	面列表中选择 🔿 预选的默认值 🔵 全部 오 编辑变量	
NT, PE	EQ,S,STH,U	
	应力	
•	应变	
) I	位移/速度/加速度	
► 0]作用力/反作用力	
► 0	〕接触	
► 0	〕能量	1
▶ 0	〕破坏/断裂	
1	热学	
□ 钢筋	的输出	
壳, 梁, 和	印复合层截面点上的输出:	
○使	用默认值 ○ 指定:	
🗸 包括	可用的局部坐标方向	
□ 应用:	过滤器: 正在平滑 🗸	
	确定 取消	

图 6-74 场变量输出

义 IHTC(板料与上模、下模及压料板的换热系数), Type 选择 Contact 按钮, 单击 Continue 按钮, 弹出 Edit Contact Property 对话框, 单击 Mechanical-Tangential Behavior, Frictionformulation 选择 Penalty, Friction Coeff 设为 0.35, 其他选项为默认; 单击 Thermal-Thermal Conductance, 勾选 Use onlyclearance-dependency data, Clearance Dependency 选项卡变亮, 如图 6-75 所示, 在表格第 1 行第 1 列处输入 40, 第 2 行第 2 列输入 1, 其他为默认, 单击 OK 按钮完成。

同理, 定义 CHTC(模具与冷却水的对流换热系数), Type 选择 Film condition, 薄膜系数 Film Coeff 设为 200, 其他默认。定义 AHTC(板料与周围空气的对流换热系数), Type 依然选择 Film condition, Film Coeff 设为 2 其他默认。

2. 热接触及换热关系

热接触及换热关系共设置 11 项,分别为:上和板料接触、下和板料接触、压料板 1、3 和 板料接触、上模和下模的水道散热、板料两个表面与空气的换热、板料两个表面的热辐射。

上模和板料的接触:

①打开 Create Interaction 对话框,输入 Name 为 punch-blank(上模和板料的接触关系) Type 选择 Surface-to-surface contact (Explicit), Step 选择 Initial,单击 Continue 按钮。在提示 栏设置选取方式为 byangle,角度设为 40,勾选 Create surface,命名为 punch。

②开始选取上模 punch 的工作表面作为接触主面打开 Create Display Group item 选择 Part/Model instances, Method 选择 Instances names, Instance 选择 punch-1。此时,视图区仅 显示上模 punch,鼠标单击选取上模工作表面(如局部位置未能选取,则按着 Shit 键多次选择 直至选取到全部工作表面),单击 Done 按钮完成选取。

③选取板料 blank 朝向上模的工作表面作为接触从面。同理,使视图区仅显示板料 blank,鼠标单击选取板料,勾选 Create surface,命名为 blank-punch,单击 Done 按钮。Abaqus 中用两种颜色区分壳体的两个面,这里选择朝向上模的工作表面,即单击 Brown。

④完成步骤③后弹出 Edit Interaction 对话框,如图 6-76 所示 Mechanical constraint formulation 选择 Penalty contact method, Slidingformulation 选择 Finite sliding, Contact interaction property 选择前面创建的 IHTC 属性, Weighting factor 选择 Specify, 然后输入 1.0, 单击 OK 按钮完成上模 punch 和板料的接触属性设置

下模和板料的接触:

重复上述 4 个步骤, 创建名为 die-blank 的相互作用关系, 此时主面为下模的工作表面, 从面为显示 Pumle 方向的板料表面, 其他设置均相同。

压料板1、2、3和板料的接触:

使用 Surface-to-surface contact (Explicit)要求接触面必须连续,因此 3 个离散的压料板需要分别设置和板料的接触关系。同样地,重复前面的 4 个步骤,分别创建名为 binder1-blank、binder2-blank、binder3-blank的热接触关系主面都为压料板表面,从面为显示 Brown 方向的板料表面,其他设置均相同。

上、下模的冷却水道换热:

①打开 Create Interaction 对话框,输入 Name 为 punch cooling(上模冷却水道换热), Step 选择 closure, Type 选择 Surface fim condition,单击 Continue 按钮。在提示栏设置选取方式为 by angle,角度设置为 60,勾选 Create Surface,命名为 Dunch cooling。

♣ 编辑接触属性	×	💠 编辑相互作用	×
名称: IHTC1 接触爆性选项 切响行为 読徒导		名称: punch-blank 类型: 表面与表面接触 (Explicit) 分析步: Initial	
力学(M) 热学(D 电(E)	Ø	● 第一表面: punch ▷ ● 第二个表面: blank-punch ▷	
热传导			<u> </u>
定义:表 🕑		滑移公式: ● 有限滑移 ○ 小滑移	
● 只使用依赖于 clearance 的数据		过盈量	
		注意: 过盈只能与第一分析步中的小滑移一起使用.	
 ○ 使用基于质量流率的数据(只用于 Standard) 			
场变量个数: 0 💭			
Conductance Clearance 40 0 0 1			
		接触作用属性: IHTC	
		权系数 ○ 使用分析默认值 ● 指定 1	
		注意: 权重系数为1将使第一个表面成为主表面.	
		接触控制 (默认)	
		☑ 在本分析步中激活	
機定 取	消	确定	汉 消

图 6-75 接触属性设置

图 6-76 接触相互作用设置

②开始选取上模 punch 的冷却水道表面, 使视图区仅显示上模 punch, 按着 Shit 键依次 选取上模内部的冷却水道表面, 单击 Done 按钮完成。

③如图 19-15 所示, Definition 选择 Property Reference, Filminteraction property 选择前面 创 建的 CHTC 属 性, Sink definition 选择 Uniform, Sink temperature 设为 20, Sink amplitude 按默认选项, 单击 OK 按钮完成上模冷却水道换热设置。

执行相同步骤,完成下模冷却水道换热设置。

板料两个表面与空气的换热:

①单击工具箱中的口, 输入 Name 为 blank-air1, Step 选择 closure, Type 选择 Surface fim condition, 单击 Continue 按钮。打开 Region Selection 对话框,选择 blank-punch 面, 单击 Continue 按钮(2)完成步骤①后弹出 Edit Interaction 对话框, Film interaction property 选择前面创 建的 AHTC 属性,其他设置与"上下模的冷却水道换热"中步骤 3 相同,最后单击 OK 按钮完成 blank-punch 面与空气的换热设置。

重复上述步骤,完成板料 blank-die 面与空气的换热设置。

板料两个表面的热辐射:

①输入 Name 为 blank-rad1, Step 选择 closure, Type 选择 Surface radiation, 单击 Continue 按钮。选择 blank-punch 面, 单击 Continue 按钮。

②在 Edit Interaction 对话框中,如图 6-78 所示, Radiation type 选择 To ambient, Emissivity distribution 选择 Unifom, Emissivity 输入 0.7, Ambient temperature 输入 20, Ambient temperature amplitude 按默认选项单击 OK 按钮完成 blank-punch 面的热辐射设置。

🔷 编辑相互作用	Ð	×	🔷 编辑相	互作用	3	\times
名称: punch o 类型: 表面热o 分析步: closure	cooling 应换条件 (动力, 温度-位移, 显式)		名称: bl 类型: 表 分析步: cl	ank-ra 面辐射 osure	ad1 f (动力, 温度-位移, 显式)	
表面: punch co	oling 🔉		表面: blar	k-pun	nch 🔉	
定义:	属性引用	f(x)	辐射类型:	〇到即	环境 ○ 空腔近似(只用于三	=维)
膜相互作用属性:	СНТС	뮵	发射率分布	: -	-致 🛛	f(x)
水槽定义:	—致 🗸		发射率:	0.	.7	
环境温度:	20		环境温度:	20	0	
环境温度的幅值:	(瞬时)	Þ	环境温度幅	值: (明	舜时) 🕑	Þ
确定	取消		<u>ه</u>	腚	取消	
图 6-77	冷却水道对流换热定义	Z	图(5-78	板料热辐射定义	

重复上述步骤,完成板料 blank-die 面的热辐射设置计算热辐射需要设置 Stefan-Boltzmann 常数。应用命令 Model→Edit Attributes-Model-1,弹出 Edit Model Attributes 对话框,如 图 6-79 所示,勾选 Absolute zero temperature 和 Stefan-Boltzmann constant,设置 Absolute zero temperature 为-273.15, Stefan-Boltzmann constant 为 1.134E-009.

至此, 11 项相互作用关系设置均已完成, 如图 6-80 所示。

⇔ 編組	荧型属性	×
名称:	Model-1	
模型类型:	Standard & Explicit	
描述:		1
input3	之件中不使用部件和装配	
物理常調	<u></u>	
🗹 绝对	-273.15	
Stefa	n-Boltzmann 常数: 1.134E-009	
□ 通用4	气体常数:	
□指定	■波公式:	
重启动	子模型 Model Instances	
注意: 通分	过下面的设置, 您可以重用此模型上前一 析的状态数据.	
口从下引	列作业中读取数据:	
重启动位	·晋: · 心·	
分析#	9名称:	
0.14	分析步结束处重启动	
0.14	增量, 时间间隔, 迭代, 或循环处重启动:	
0	并在此处终止该分析步	
0	并完成该分析步	
	确定 取消	

🔷 相互作用管理器 × 名称 Initial closure form 编辑... binder1-blna 已创建 传递 传递 左移 ✔ binder2-blan 已创建 传递 传递 右移 ✔ binder3-blan 已创建 传递 传递 ✓ blank-air1 已创建 传递 激活 ✓ blank-air2 已创建 传递 取消激活 ✓ blank-rad1 已创建 传递 ✓ blank-rad2 已创建 传递 已创建 die cooling 传递 ✓ die-blank 已创建 传递 传递 ✓ punch coolin 已创建 传递 ✔ punch-blank 已创建 传递 传递 分析步: 相互作用 类型:表面与表面接触 (Explicit) 相互作用 状态:已在此分析步中创建 创建... 复制... 重命名.... 删除... 关闭

图 6-80 11 项相互作用关系

图 6-79 绝对零度和 Stefan-Boltzmann 常数设置 刚体:

创建参考点:

直接用鼠标单击选取上模、压料板和下模上的任意节点,分别定义为参考点 RP-1、RP-2、RP-3。在目录树选择 Assembv→Features 找到 RP-1、RP-2、RP-3,依次 Rename 为 punch、binder、die,并分别创建名为 punch、binder、die 的 set。

创建刚体:

设置 Name 为 punch, Type 选择 Rigid Body,

单击 Continue 按钮, 弹出 Edit Constraint 对 话框, 如图 6-81 所示。首先, 单击 Point 右侧的 蓝色箭头, 在 Region Selection 对话框中选择 punch。其次, 使视图区仅显示上模 punch, 在 Regiontype 选择 Body (elements), 单击右侧蓝色箭 头, 提示栏中选取方式选择 individually, 勾选 Create set, 命名为 punch-1. Set-1, 框选整个 punch 模型, 单击 Done 按钮, 勾选 Adjust point to center of mass at start of analysis, 单击 OK 按钮, 完成上模 punch 的刚体约束设置。

重复相同步骤,完成压料板 binder 和下模 die 的刚体约束设置。

创建载荷:

1. 幅值曲线

在目录树找到 Amplitude, 单击鼠标右键, 选择 Create, 弹出 CreateAmplitude 对话框, 输入 Name 为 smoothclosure, Type 选择 Smoothstep, 单击 Continue 按钮, 弹 出 Edit Amplitude 对话框, 在 Time/Frequency 列输入 0 和 0.0135, 在 Amplitude 列输入 0 和 1, 单击 OK 按钮完 成幅值定义, 如图 6-82 所示。同理, 创建名为 smoothform 的 Amplitude, 在 Time/Frequency 列输入 0 和 0.05, 在 Amplitude 列输入 0 和 1。

2. 边界条件

打开 Create Boundary Condition 对话框, 输入 Name 为 die fix, Step 选择 initial, Cateqory 选择 Mechanical, Type 选择 Symmetry/Antisymmetry/Encastre, 单击 Continue 按钮。在 Region Selection 对话框中选择 die, 单击 Continue 按钮,选择 ENCASTRE(U1=U2=U3=UR1=UR2=UR3=0), 单击 OK 按钮完成下模固定约束。

压料板位移:

同理, 创建 closure 条件, Step 选择 closure, Category 选择 Mechanical, Type 选择 Displacement/Rotation, 单击 Continue 按钮。选择 binder, 单击 Continue 按钮, 弹出图 6-83 所示的对话 框, 勾选 U1、U2、U3、UR1、UR2、UR3、在 U3 处输入 27, 表示压料板向 Z 轴正向移动 27 mm; Ampltude 选择前面创建的 smooth-closure, 单击 OK 按钮完成压料板压边过程约束。

🚔 编辑约束		×
名称: punch		
类型: 刚体		
区域类型	区域	
体(单元)	punch-1.Set-1	
铰结(结点)	(无)	130
绑定(结点)	(无)	
解析表面	(无)	
参考点		
点: punch 🔉		
☑ 在分析开始时将点调整	劉质心.	
□ 将所选区域限制为等) (只应用于耦合热 - 应力	温的 1分析)	
确定	取	Ă
图 6-81	定义刚体的约束	₹.

图 6-82 定义幅值

压料板压边过程在 closure 分析步采用位移约束, 而在 form 分析步则要施加压边力载荷, 因此, closure 边界在 form 分析步应做修正。都打开 Boundary Condition Manager 对话框, 如图 6-84 所示, 编辑 closure 的 form 分析步, 在弹出的 Edit Boundany Condition 对话框中, 不勾选 U3, 其他不变, 单击 OK 按钮, form 分析步由 Propagated 变为 Modifed。此时, 压料板在 form 分析步中, Z 方向没有约束, 可自由平移。

上模冲压位移:

同理, 创建 punch 条件, Step 选择 form, Category 选择 Mechanical, Type 选择 DisplacementRotation, 单击 Continue 按钮。选择 punch, 单击 Continue 按钮, 勾选 U1、U2、U3、UR1、 UR2. UR3, 在 U3 处输入 101, 表示上模向 Z 轴正向移动 101 mm; Ampltude 选择前面创建的 smooth-form, 单击 OK 按钮完成上模冲压位移约束。

3. 施加载荷

打开 Create Load 对话框, 输入 Name 为 closure, Step 选择 form, Category 选择 Mechanical, Type 选择 Concentrated force, 单击 Continue 按钮。单击提示栏右侧的面,选择 binder, 单击 Continue 按钮, 弹出 Edit Load 对话框, 如图 6-85 所示, 在 CF1 和 CF2 处输入 0, CF3 处输入 25000, 表示压料板在 Z 轴正向施加 25 kN 的压边力, 其他默认, 单击 OK 按钮。

4. 初始温度条件

打开 Create Predefined Field 对话框,输入 Name 为 blank, Step 选择 initial, Category 选择 Other, Type 选择 Temperature,单击 Continue 按钮。单击提示栏的 Mesh,在新提示栏中选取 广式选择 incividually,勾选 Creat set,命名为 blank-node,使视图区仅显示板料 blank,框选整 个板料模型,单击 Done 按钮完成选取。在 Edit Predefined Field 对话框中,如图 6-86 所示, Magnitude 设为 800,表示板料初始温度为均匀的 800℃,其他默认,单击 OK 按钮。

♣ 编辑载荷 ×	♣ 编辑预定义场 ×
名称: closure 类型: 集中力 分析步: form (动力, 温度-位移, 显式)	名称: blank 英型: 温度 分析步: Initial 区域: blank-node 除
区域: binder 🗟	分布: 直接说明 🗸 f(x
坐标系:(全局) 🗟 🙏	截面的变化: 通过区域常数
分布: 一致 🧹 🧹	大小: 800
CF1: 0	
CF2: 0	
CF3: 25000	
幅值: (瞬时) 🗸 🏳	
□ 跟随结点旋转	
注意: 将要施加于每个结点的力.	
确定取消	确定 取消
图 6-85 定义压边力载荷	图 6-86 定义板料初始温度

其他3个部件的初始温度

同理, 重复上述步骤, 定义上模、压料板和下模的初始温度为 20℃, Predefined Field 命 名为 tool.

定义网格属性:

在环境栏切换 Module 到 Mesh, Object 选择 Part,显示部件 Part 为 blank。提示栏选取方 式选择 individually,框选整个板料模型,单击 Done 按钮,弹出 Element Type 对话框如图 6-87 所示, Element Library 选择 Explicit, Family 选择 Coupled Temperature-Displacement,其他 默认,单击 OK 按钮。同理,依次在环境栏显示 Part 为 binder、punch 和 die,定义各部件网格 属性。

臺 单元类型				×
单元库 〇 Standard O Explicit	族 声学 泪度。//) 除標会			1
 几何阶次 ● 线性 ○ 二次 	選及"以後約日 膜 表面			
四边形 三角形				
单元控制履性				
二阶精度: ○ 是 ○ 否 沙漏控制: ○ 使用默认 单元删除: ○ 使用默认	 ○ 増强 ○ 松驰刚度 ○ ○ 是 ○ 否 	Ruse		
最大下降: ● 使用默认 缩放系数: 位移沙震:	 指定 1 旋转沙漏: 1 	线性体积粘性; 1		
S4RT:四结点热力耦合曲	面薄壳或厚壳,减缩积分,注	少漏控制,有限膜应变.		
注意:要为网格划分选择一个	单元形状, 请从主菜单栏中	选择 "网格->控制属性".		
确定		默认值	取消	

图 6-87 定义板料网格属性

创建并提交作业:

打开 Create Job 对话框,修改 Name 为 hotstamping,单击 Continue 按钮,弹出 Edit Job 对 话框,如图 6-88 所示,在 Parallelization 选项 卡勾选 Use multiple processors 并输入 4,可实 现多核并行计算,其他默认,单击 OK 按钮。 单击工具箱中右侧按钮,弹出 Job Manager 对 话框,单击 Submit 按钮提交作业,单击 Monitor 按钮监控求解过程,完成计算后,单击 Results 按钮自动切换到后处理模块查看结果。

6.8.3 分析结果

(1)温度场

在工具栏中选择 NT11,通过单独显示仿 真部件,可以分别查看上模、下模以及压料板 的温度分布。在此,我们主要关注板料的温度 分布。选择 NT13,查看板料的温度分布,如图

♣ 编辑作业	\times
名称: hotstamping	
模型: Model-1	
分析程序: Abaqus/Explicit	
描述:	
提交 通用 内存 并行 精度	
፼ 使用多个处理器 4 €	
□ 使用GPGPU加速 1 ÷	
Abaqus/Explicit	
域的个数: 4	
并行方法:作用域	
多处理器模式: 默认	
确定 取消	
图 6-88 创建作业	

6-89 所示,板料的温度在 527~749℃,高温区域分布在板料中部,低温区域分布在板料边缘 部位,这与实际的情况相符合。

图 6-89 板料温度分布

(2)厚度分布 在工具栏中选择 STH,同时设置仅板料显示。查看板料厚度分布,如图 6-90 所示。通

常,板料减薄超过 30% 即认为发生破裂。本讲中由于设置了压边力载荷,在零件深度方向发 生了显著的拉延图中黑色区域减薄超过 30%,发生破裂,而个别圆角较小的位置发生了起皱 现象,即板料厚度超过 1.6 mm。

图 6-90 材料厚度分布

③应力和应变

如图 6-91 所示, 在工具栏中选择 S→Mises, 查看板料应力分布, 应力集中主要发生在侧 壁及弯曲过渡位置, 但盈利强度仍在抗拉极限以内, 不会发生断裂; 在工具栏中选择 PEEQ, 可以查看板料的应变, 从图 6-92 可以看出, 最大等效塑性应变发生在破裂区域侧壁的应变 大于其他位置, 与厚度分布相呼应。

图 6-91 等效米塞斯应力

图 6-92 等效塑性应变