练习1.1

(1.1 基本概念)

\rightarrow	填空题
---------------	-----

1. 呆别于问目怀别击 3 次, F	ΠA_i 表示第 ι 伙击中目标, ι =	1,2,3,则事件"二次都没有
击中目标"可表示为	_;事件"至少有一次击中目标'	'可表示为;事
件"恰好有两次击中目标"可表示	为	
2. 设样本空间 S = {x 0 ≤ x	$x \le 2$, $\Rightarrow A = \{x \mid 0.5 \le x\}$	≤ 1 , $B = \{x \mid 0.8 < x \leq 1.$
6},则 AB 表示事件"	"; A - B 表示事件"_	$\overline{}$; $\overline{A \cup B}$
表示事件"	<u>.</u>	

- 二、写出下列随机试验的样本空间及各个事件中的样本点:
- (1) 同时掷 3 枚骰子,记录 3 枚骰子的点数之和. 令事件 A 表示"点数之和大于 6",事件 B 表示"点数之和不低于 12".
- (2) 一盒中有分别标有号码1, 2, 3, 4, 5的5张卡片, 从中任取2张卡片, 令事件C表示"最小号码是 2", 事件 D表示"最大号码为 4".
 - 三、设A, B, C 为三事件, 用A, B, C 的运算关系表示下列事件.
 - (1)A 发生, B 与 C 不发生;
 - (2)A, B都发生,而 C不发生;
 - (3)A, B, C 中至少有一个发生;
 - (4)A, B, C都不发生;
 - (5)A, B, C中至少有两个发生;
 - (6)A, B, C中不多于两个发生.

练习 1.2

(1.2 随机事件的概率)

<u> </u>		填空	题
	`	- スー	\sim

1. 已知 A, B 是两随机事件, 且 P(A) = 0.4, P(B) = 0.6, $P(A \cup B) = 0.8$, 则 P(B - A)

2. 知 $P(A) = P(B) = P(C) = \frac{1}{6}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{8}$, 则 A, B, C 全不发生 的概率为 .

二、选择题

- 1. 设 A, B 为两随机事件, 若 P(AB) = 0, 则下列命题正确的是()
- (A)A, B 互斥

- (B) AB 是不可能事件
- (C)AB 未必是不可能事件
- (D)P(A) = 0, P(B) = 0
- 2. 设当事件 A 与 B 同时发生时,事件 C 必发生,则().
- $(A)P(C) \le P(A) + P(B) 1;$ $(B)P(C) \ge P(A) + P(B) 1;$
- (C)P(C) = P(AB):
- $(D)P(C) = P(A \cup B).$
- 3. 设事件 A 与事件 B 互不相容, 则, ().
- $(A)P(\overline{AB}) = 0;$

(B)P(AB) = P(A)P(B);

(C)P(A) = 1 - P(B):

- $(D)P(\overline{A} \cup \overline{B}) = 1.$
- 三、已知事件 $A \setminus B$ 的概率分别为 P(A) = 0.7, P(B) = 0.6, 且 P(AB) = 0.4,
- 求(1) $P(A \cup B)$; (2)P(A B); (3) $P(A \cup \overline{B})$.
- 四、设事件 A 与事件 B 为任意两个事件,证明 $P(AB) \leq \frac{P(A) + P(B)}{2}$.

571

练习1.3

(1.3 古典概型与几何概型)

→ ′	填空题

- 1. 三个人中至少有两个人生日在同一月份的概率是 = _____(假设每个月出生概率相同).
 - 2. 五个人排队, 甲不在首位且乙不在末位的概率是 .
 - 3. 在区间(0, 1) 中随机地取两个数,则两数之差的绝对值小于 $\frac{1}{4}$ 的概率为 ______.
 - 二、八人围坐圆桌,甲乙相邻的概率是多少?
 - 三、在单位圆内随机取一点,该点到圆心的距离大于到直线 x=1 的距离的概率是多少?

四、甲和乙约定在下午12点到1点之间随机到达某地,甲到达后会等待15分钟,乙到达后会等待10分钟,求他们相遇的概率.

练习 1.4

(1.4 条件概率与乘法公式)

填空题

- 1. $\exists \exists P(A) = 0.4, P(B \mid A) = 0.6, \exists P(A \cup B) = 0.46, P(B) =$
- 2. 某人有一笔资金, 他投入基金的概率为0.58, 购买股票的概率为0.28, 两项投资都做 的概率为 0.19, 已知他已购买股票, 再投入基金的概率为
 - 3. 已知 $P(\overline{A}) = 0.3$, P(B) = 0.4, $P(A\overline{B}) = 0.5$, 则 $P(B \mid A \cup \overline{B}) =$
 - 二、选择题
- 1. 设 A, B 为随机事件, 已知 $P(A) = \frac{1}{4}$, $P(B \mid A) = \frac{1}{2}$, $P(A \mid B) = \frac{1}{3}$, 则 $P(A \cup B) = \frac{1}{3}$).
 - (A) $\frac{1}{8}$;

(B) $\frac{1}{4}$;

(C) $\frac{3}{8}$;

- (D) $\frac{1}{2}$.
- 2. 设 A, B 为随机事件, 且 P(B) > 0, P(A | B) = 1, 则必有(
- $(A)P(A \cup B) > P(A)$;
- $(B)P(A \cup B) > P(B)$:
- $(C)P(A \cup B) = P(A)$:

- $(D)P(A \cup B) = P(B)$.
- 3. 设 $A \setminus B$ 互为对立事件, 且 P(A) > 0, P(B) > 0, 则下列各式中错误的是().
- (A)P(B | A) = 0;

(B)P(A | B) = 0;

(C)P(AB) = 0;

- $(D)P(A \cup B) = 1.$
- 三、设一批产品中一、二、三等品各占60%,30%,10%,从中随意抽取一件,发现不是 三等品, 求此件产品是一等品的概率.

四、袋中装有6个红球,4个白球,每次从袋中任取1个球,观察颜色后将其放回,并再 放入2个与所取的那个球同颜色的球, 现连续进行3次, 试求前两次取到白球并且第三次取 到红球的概率.

练习1.5

(1.5 全概率公式与贝叶斯公式)

一、填空题

- 1. 某射击小组有 20 名射手, 其中一级射手 4人, 二级射手 8人, 三级射手 7人, 四级射手 1人, 各级射手能通过选拔进入比赛的概率依次为 0.9, 0.7, 0.4, 0.1. 则任选一名射手能通过选拔进入比赛的概率是 _____.
- 2. 现有两个箱子,第一个箱子装有10个球,其中8个白球,第二个箱子装有20个球,其中4个白球,现从每个箱子任取一球,然后再从这两个球中任取一个,则取到白球的概率是
- 二、根据以往记录的数据分析,某船只运输的某种物品损坏的情况共有3种,损坏2%(这一事件记作 A_1),损坏10%(事件 A_2),损坏90%(事件 A_3),且已知 $P(A_1)=0.8$, $P(A_2)=0.15$, $P(A_3)=0.05$,现从已被运输的物品中随机地取1件,发现是完好的(这一事件记作B),试求P(B), $P(A_1 \mid B)$ 概率.
- 三、袋中装有12个乒乓球,9个是新的,3个是旧的,第一次比赛时任取3个使用,比赛后仍放回袋中,第二次比赛时再从袋中任取3个球:
 - (1) 求第二次比赛取出的都是新球概率,
 - (2) 已知第二次取出的球都是新的, 求第一次取到的都是新球的概率.

练习1.6

(1.6 事件的独立性与 Bernoulli 概型)

き題

1. 设在三	次独立试验中,	事件 A 出现的	的概率相等,	若已知 A	至少出现一	次的概率为	$\frac{19}{27}$,
则事件 A 在一次	欠试验中出现的	Ⅰ概率是	;				

- 2. 设事件 $A \setminus B$ 相互独立,已知仅有 A 发生的概率为 1/4,仅有 B 发生的概率为 1/4,则 $P(A) = _____, P(B) = ____.$
- 3. 设两个相互独立的事件 A 和 B 都不发生的概率为 $\frac{1}{9}$, A 发生 B 不发生的概率与 B 发生 A 不发生的概率相等,则 P(A) =
 - 二、选择题
 - 1. 对于任意两事件 A 和 B, ().
 - (A) 若 $AB \neq \Phi$, 则 A, B 一定独立; (B) 若 $AB \neq \Phi$, 则 A, B 有可能独立;
 - (C) 若 $AB = \Phi$, 则 A, B 一定独立; (D) 若 $AB = \Phi$, 则 A, B 一定不独立.
- 2. 将一枚均匀硬币独立地掷两次,设 $A_1 = \{ 第一次出现正面 \}$, $A_2 = \{ 第二次出现正面 \}$, $A_3 = \{ 正反面各出现一次 \}$, $A_4 = \{ 正面出现两次 \}$, 则 ().
 - (A)A₁, A₂, A₃ 相互独立;
- (B)A₂, A₃, A₄ 相互独立;
- $(C)A_1, A_2, A_3$ 两两独立;
- (D)A₂, A₃, A₄ 两两独立.
- 3. 某人向同一目标独立重复射击,每次射击命中目标的概率为p(0 ,则此人第 4次射击恰好第 2 次命中目标的概率为().
 - $(A)3p(1-p)^2$;

 $(B)6p(1-p)^2;$

 $(C)3p^2(1-p)^2$;

- $(D)6p^2(1-p)^2.$
- 三、袋中有大小相同的白球3只,黑球若干只,有放回地摸球3次,若至少摸到2只白球的概率为7/27,求袋中黑球的个数.

四、发射一枚鱼雷击中潜艇致命部位的概率为 1/4, 击中非致命部位的概率为 1/2, 没击中的概率为 1/4, 若潜艇被击中致命部位一次即被摧毁, 非致命部位被击中 2次被摧毁的概率为 5/9, 非致命部位被击中一次被摧毁的概率为 1/9, 求同时发射 2 枚鱼雷潜艇被摧毁的概率.

五、某电厂由甲、乙两台机组并联向一城市供电,当一台机组发生故障时,另一台机组 能在这段时间满足城市全部用电需求的概率为 0.85. 设每台机组发生故障的概率为 0.1,且 它们是否发生故障互相独立.

- (1) 求保障城市供电的概率;
- (2) 求已知电厂机组发生故障时, 供电能满足需求的概率.

练习 2.1

(2.1 随机变量 2.2 随机变量的分布函数)

一、填空题

1. 随机变量 X 的分布函数 F(x) 是一个实函数, 其定义域是 _____, 值域是

2. 设随机变量 X 分布律为

X	1	3	6	8	
p	0. 2	0. 1	0. 4	0. 3	_

则
$$P\{\frac{1}{2} < X \leq 3\} =$$
______; X 的分布函数为______.

二、选择题

1. 设随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}, & 0 \leq x < 1, 则 $P\{X = 1\} = (). \\ 1 - e^{-x}, & x \geq 1. \end{cases}$$

(A)0; (B)
$$\frac{1}{2}$$
; (C) $\frac{1}{2} - e^{-1}$; (D)1 - e^{-1} .

2. 下列函数中, 可以作为一个随机变量的分布函数的是().

$$(A) F(x) = \frac{1}{1+x^2}$$

$$(B) F(x) = \frac{1}{\pi} \arctan x + \frac{1}{2}$$

$$(C) F(x) = \begin{cases} \frac{1}{2} (1 - e^{-x}), & x > 0; \\ 0, & x \le 0 \end{cases}$$

$$(D) F(x) = \int_{-\infty}^{x} f(g) dt, \, \sharp r \int_{-\infty}^{+\infty} f(t) dt = 1$$

三、设随机变量
$$X$$
 的分布函数为 $F(x)=\begin{cases} 0, & x<0, \\ A \sin x, & 0 \leq x \leq \frac{\pi}{2},$ 求常数 A 和概率
$$1, & x>\frac{\pi}{2}. \end{cases}$$

$$P\{ |X| < \frac{\pi}{6} \}.$$

四、以 X 表示某商店从早晨开始营业直到第一位顾客到达的等待时间(以分计), X 的分布函数是

$$F(x) = \begin{cases} 1 - e^{-0.4x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

求以下概率,(1)P{等待时间至多3分钟};(2)P{等待时间至少4分钟};(3)P{等待时间3分钟至4分钟之间};(4)P{等待时间至多3分钟或至少4分钟};(5)P{等待时间恰好2.5分钟}.

班级

练习 2.2

(2.3 离散型随机变量及其分布)

一、填空题

1. 设随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, x < -1 \\ 0.2, -1 \le x < 2 \\ 0.7, 2 \le x < 4 \\ 1, x \ge 4 \end{cases}$ 则 X 的分布律为

- 2. 设随机变量 X 服从参数为 2 , p 的二项分布,随机变量 Y 服从参数为 3 , p 的二项分布,若 $P\{X \ge 1\} = \frac{5}{9}$, 则 $P\{Y \ge 1\} = \underline{\hspace{1cm}}$.
 - 3. 设随机变量 X 服从 Poisson 分布,且 $P\{X=1\}=P\{X=2\}$,则 $P\{X=3\}=$ ______. 二、选择题
- 1. 某人连续向一目标射击,每次命中目标的概率为 $\frac{3}{4}$,他连续射击直到击中为止,则射击次数为 3 的概率是()

$$(A)\left(\frac{3}{4}\right)^3;$$
 $(B)\left(\frac{3}{4}\right)^2 \times \frac{1}{4};$ $(C)\left(\frac{1}{4}\right)^2 \times \frac{3}{4};$ $(D)C_3^2\left(\frac{1}{4}\right)^2 \times \frac{3}{4}.$

2. 设随机变量 ξ 的分布律是: $P\{\xi = k\} = b\lambda^k$, b > 0, $k = 1, 2, \dots$, 则常数 b 满足()

$$(A)\lambda > 0, \lambda \in R;$$

$$(B)\lambda = b + 1;$$

$$(C)\lambda = \frac{1}{b+1}; \qquad (D)\lambda = \frac{1}{b-1}$$

三、已知甲、乙两箱装有同种产品,其中甲箱中装有 3 件合格品和 3 件次品, 乙箱中仅装有 3 件合格品,从甲箱中任取 3 件产品放入乙箱后,求乙箱中次品件数的分布律及分布函数 F(x).

四、从学校乘汽车到火车站的途中有 3 个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是 $\frac{2}{5}$,设 X 为途中遇到红灯的次数,求随机变量 X 的分布律和分布函数.

五、电子计算机内,装有 2000 个同样的电子管,每一电子管损坏的概率为 0.0005,如果任一电子管损坏时,计算机即停止工作,求计算机停止工作的概率(按 Poisson 公式计算).

练习 2.3

(2.4 连续型随机变量及其分布)

一、填空题

- 1. 设随机变量 $X \sim N(a, \sigma^2)$, 且 $P\{a k\sigma < X \le a + k\sigma\} = 0.95$, 则 k = 1
- 2. 设随机变量 Y 服从参数为 1 的指数分布, a 为常数且大于零, 则

$$P\{Y \leqslant a + 1 \mid Y > a\} =$$

3.
$$X \sim N(-1, \sigma^2)$$
, $P\{-3 < X < -1\} = 0.4$, $\emptyset P\{x \ge 1\} =$.

- 二、冼择题
- 1. 任何一个连续型随机变量的概率密度 $\varphi(x)$ ().
- (A) 连续:

(B) 可导:

(C) 非负且不大于1:

- (D) 是可积的非负函数.
- 2. 设随机变量 X 服从正态分布 $N(\mu_1, \sigma_1^2)$, Y 服从正态分布 $N(\mu_2, \sigma_2^2)$, 且

$$P\{|X - \mu_1| < 1\} > P\{|Y - \mu_2| < 1\}, 则必有()$$

 $(A)\sigma_1 < \sigma_2;$

 $(B)\sigma_1 > \sigma_2;$

 $(C)\mu_1 < \mu_2;$

- $(D)\mu_1 > \mu_2$.
- 3. 设 $f_1(x)$ 为标准正态分布的概率密度, $f_2(x)$ 为[-1,3]上均匀分布的概率密度, 若

$$f(x) = \begin{cases} af_1(x)\,, & x \leq 0, \\ bf_2(x)\,, & x > 0. \end{cases} (a > 0, b > 0) \text{ 为概率密度, } 则\,a,b\,应满足().$$

(A)2a + 3b = 4

(B)3a + 2b = 4

(C)a + b = 1

(D)a + b = 2

三、设连续型随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} ax + 1, 0 \le x \le 2, \\ 0, 其他. \end{cases}$

求: (1) 常数 a 的值; (2) 随机变量 X 的分布函数 F(x); (3) $P\{1 < X < 2\}$.

四、某地抽样调查结果表明, 考生的外语成绩(百分制) 近似服从正态分布, 平均成绩为 72 分, 96 分以上的占考生总数的 2.3%, 试求考生的外语成绩在 60 分至 84 分之间的概率. $(\mathfrak{M}: \Phi(1) = 0.8413, \Phi(2) = 0.9770.)$

五、机器自动称装大米, 每袋大米的重量 $X \sim N(50, 0.5^2)$ (单位: kg). 随机取一袋, 若 误差超过 0.8 kg 就停机调整, 求需要停机调整的概率.

六、随机变量 X 的分布函数为 $F(x) = A + B \arctan x$, $-\infty < x < +\infty$.

 $\vec{x}_{:}(1)$ 常数 $A, B_{:}(2)P(|X| < 1)_{:}(3)$ 随机变量 X 的密度函数.

练习 2.4

(2.5 随机变量函数的分布)

一、填空题

- 1. 已知 $X \sim N(\mu, \sigma^2)$, $P\{3X + 5 \le 0\} = 0.5$, 则 $\mu =$
- 2. 设随机变量 X 的概率密度为

$$f_X(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

则随机变量 $Y = e^X$ 的概率密度 $f_Y(y) =$

- 二、冼择题
- 1. 设 X 在 [0, 1] 上服从均匀分布, Y = 2X + 1, 则下列结论正确的是(
- (A) Y 在 [0, 1] 上服从均匀分布; (B) Y 在 [1, 3] 上服从均匀分布;
- (C) Y 在[0, 3] 上服从均匀分布; (D) P {0 $\leq Y \leq 1$ } = 1.
- 2. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2\sqrt{\pi}} e^{-\frac{(x+2)^2}{4}} (-\infty < x < +\infty)$,且 $Y = aX + b \sim$

N(0,1),则下列各组数中应取().

$$(A) a = \frac{1}{2}, b = 1;$$

(B)
$$a = \frac{\sqrt{2}}{2}$$
, $b = \sqrt{2}$;

$$(C)a = \frac{1}{2}, b = -1;$$

(D)
$$a = \frac{\sqrt{2}}{2}$$
, $b = -\sqrt{2}$

三、设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{a}x^2, & 0 < x < 3, \\ 0, & \text{其他.} \end{cases}$

$$Y = \begin{cases} 2, & x \le 1, \\ x, & 1 < x < 2, \\ 1, & x \ge 2. \end{cases}$$

(1) 求 Y 的分布函数; (2) 求概率 $P\{X \leq Y\}$.

四、设连续型随机变量 X 的密度函数为 $f(x) = \begin{cases} \frac{1}{2}, -1 < x < 0, \\ \frac{1}{4}, 0 \le x < 2. \end{cases}$

试求 $Y = X^2$ 的密度函数 $f_v(v)$.

五、随机变量 X 的概率密度为

$$f(x) = \begin{cases} 1+x, & -1 \le x < 0; \\ 1-x, & 0 \le x < 1 \\ 0, & \sharp \text{ the } \end{cases}, \ \diamondsuit \ Y = \begin{cases} -1, & X \le 0, \\ 1, & X > 0. \end{cases}$$

求 Y 的分布律和分布函数.

练习 3.1

(3.1 二维随机变量及其分布)

一、填空题

1. 若二维随机变量(X,Y) 的联合分布律为

X Y	0	1	2
0	1/8	$\frac{1}{4}$	1/8
1	1/6	$\frac{1}{6}$	С

2. 已知连续型随机变量(X,Y) 的分布函数为

$$F(x, y) = \begin{cases} b - ae^{-x} - ae^{-y} + ae^{-x-y-\frac{1}{2}xy}, & x > 0, y > 0, \\ 0, & \sharp \text{ th.} \end{cases}$$

则 *a* = ______, *b* = ______.

3. 在区间(0, 1) 中随机地取两个数,则两数之差的绝对值小于 $\frac{1}{2}$ 的概率为

二、选择题

1. 下列不是概率密度或分布函数的有(

$$(A)f(x, y) = \frac{1}{\pi^2(1 + x^2)(1 + y^2)};$$

(B)
$$f(x, y) = \begin{cases} 6e^{-(2x+3y)}, & x > 0, y > 0, \\ 0, & 其他; \end{cases}$$

(C)
$$F(x, y) = \begin{cases} (1 - e^{-5x})(1 - e^{-\frac{y}{4}}), & x > 0, y > 0, \\ 0, & \text{ 其他;} \end{cases}$$

$$(D)F(x, y) = \begin{cases} 1, & x > y, \\ 0, & 其他. \end{cases}$$

三、计算题

- 1. 三封信随机地投入编号为1,2,3的三个信箱中,设X为投入1号信箱的信数,Y为投入2号信箱的信数,求(X,Y)的联合分布律和边缘分布律.
 - 2. 设二维随机变量(X, Y) 的联合密度函数为:

$$f(x, y) = \begin{cases} x^2 + cxy, \ 0 \le x \le 1, \ 0 \le y \le 2, \\ 0, \ \text{其他}. \end{cases}$$

求: (1) 常数 c; (2) $P\{X + Y \leq 1\}$; (3) X 和 Y 的边缘密度函数.

- 3. 设随机变量(X, Y) 的密度函数为 $f(x, y) = \begin{cases} ke^{-(3x+4y)}, & x > 0, y > 0, \\ 0, &$ 其他.
- (1) 确定常数 k; (2) 求(X, Y) 的分布函数; (3) 求 P{0 < X \leq 1, 0 < Y \leq 2}.

练习 3.2

(3.2 条件分布)

一、填空题

1. 设(X, Y) 的分布律为

学院

X Y	0	1	2
0	$\frac{1}{15}$	$\frac{4}{15}$	$\frac{1}{15}$
1	$\frac{4}{15}$	$\frac{4}{15}$	0
2	$\frac{1}{15}$	0	0

则 $P\{X=1 \mid Y=0\}$ = .

2. 设(X, Y) 在由直线 $\gamma = x$, $\gamma = 2 - x$, $\gamma = 0$ 所围的区域内服从均匀分布, 则 $P\{0.1 < Y \le 0.4 \mid X = 1.5\} =$

3. 设随机变量
$$(X, Y)$$
 的概率密度为 $f(x, y) = \begin{cases} \frac{1}{2} xye^{-\frac{x^2}{8}}, & 0 < x < + \infty, 0 \le y < 1, \\ 0, &$ 其他.

$$f_{X\mid Y}(x\mid \frac{1}{2}) = \underline{\hspace{1cm}}.$$

二、选择题

设随机变量(X, Y) 服从二维正态分布, 且X, Y相互独立, $f_X(x), f_Y(y)$ 分别表示X, Y的 概率密度,则在 Y = y 的条件下, X 的条件概率密度 $f_{xy}(x \mid y)$ 为 ()

$$(A)f_X(x)$$
;

$$(B)f_{Y}(y)$$
;

$$(C)f_X(x)f_Y(y)$$
;

(B)
$$f_{Y}(y)$$
; (C) $f_{X}(x)f_{Y}(y)$; (D) $f_{X}(x)/f_{Y}(y)$.

三、解答题

1. 袋中有1个红色球,2个黑色球与3个白球,现有放回地从袋中取两次,每次取一球, 以 X, Y, Z 分别表示两次取球所取得的红球、黑球与白球的个数.

- (1) 求 $P\{X = 1 | Z = 0\}$; (2) 求二维随机变量(X, Y) 的概率分布.
- 2. 设二维随机变量(X,Y) 的概率密度为:

$$f(x, y) = Ae^{-2x^2 + 2xy - y^2}, -\infty < x < +\infty, -\infty < y < +\infty,$$

求常数 A 及条件概率密度 $f_{v,v}(y \mid x)$.

3. 设二维随机变量(X, Y) 服从矩形域 $D = \{(x, y) \mid -1 \le x \le 2, 0 \le y \le 2\}$ 上的均匀 分布, 求条件概率 $P\{X \ge 1 \mid X \le Y\}$.

班级

练习3.3

(3.3 随机变量的独立)

一、填空题

1. 设二维随机变量(X, Y) 服从正态分布 N(1, 0; 1, 1; 0), 则 $P\{XY - Y < 0\}$ =

2. 如果随机变量(X, Y) 的联合概率分布为

Y	1	2	3
1	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$
2	1/3	α	β

则 α , β 应满足的条件是 ; 若 X 与 Y 相互独立, 则 α = , β = .

- 二、选择题
- 1. 设二维随机变量(X, Y) 的概率分布为

X	0	1
0	0. 4	a
1	b	0. 1

若随机事件 $\{X = 0\}$ 与 $\{X + Y = 1\}$ 相互独立,则().

- (A)a = 0.2, b = 0.3;
- (B)a = 0.1, b = 0.4;
- (C)a = 0.3, b = 0.2;

- (D) a = 0.4, b = 0.1.
- 2. 设 X_1 , X_2 是任意两个相互独立的连续型随机变量,它们的概率密度分别为 $f_1(x)$ 与 $f_2(x)$,分布函数分别为 $F_1(x)$ 与 $F_2(x)$,则()
 - $(A) f_1(x) + f_2(x)$ 必为某一随机变量的概率密度;
 - $(B)f_1(x)f_2(x)$ 必为某一随机变量的概率密度;
 - $(C)F_1(x) + F_2(x)$ 必为某一随机变量的分布函数;
 - $(D)F_1(x)F_2(x)$ 必为某一随机变量的分布函数.
 - 三、解答题
 - 1. 设二维连续型随机变量(X,Y) 的联合密度函数为

$$f(x, y) = \begin{cases} cxy^2, & 0 < x < 1, 0 < y < 1, \\ 0, &$$
 其他.

求常数 c, 并判断 X 与 Y 是否相互独立.

2. 设X和Y是两个相互独立的随机变量,X在(0,1)内服从均匀分布,Y的概率密度为

$$f_{Y}(y) = \begin{cases} \frac{1}{2} e^{-y/2}, & y > 0\\ 0, & y \leq 0 \end{cases}$$

(1) 求 X 与 Y 的联合概率密度;(2) 设关于 a 的二次方程为 $a^2 + 2Xa + Y = 0$,求此方程有实根的概率.

练习 3.4

(3.4 随机变量函数的分布)

一、填空题

- 1. 设 X 与 Y 相互独立,且都服从参数为 λ 的指数分布,记 $Z = \max(X, Y)$,则 Z 的分布
- 2. 设二维随机变量(X, Y) 服从区域 $G = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2\}$ 上的均匀分布, \Leftrightarrow Z = min(X, Y), 则 P{Z ≤ $\frac{1}{2}$ } = _____.

二、选择题

1. 设随机变量 X, Y独立同分布, 且 X的分布函数为 F(x), 则 $Z = \max\{X, Y\}$ 分布函数 为()

 $(A)F^2(x)$:

(B)F(x)F(y);

 $(C)1 - [1 - F(x)]^2$:

(D) $\lceil 1 - F(x) \rceil \lceil 1 - F(y) \rceil$.

593

- 2. 设随机变量 X 与 Y 相互独立,且设 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$,则 Z = X Y 仍 服从正态分布, 目有()
 - $(A)Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$:
- (B) $Z \sim N(\mu_1 + \mu_2, \sigma_1^2 \sigma_2^2)$:
 - (C) $Z \sim N(\mu_1 \mu_2, \sigma_1^2 \sigma_2^2);$ (D) $Z \sim N(\mu_1 \mu_2, \sigma_1^2 + \sigma_2^2).$
 - 3. 设(X, Y) 服从二维均匀分布,则(
 - (A) 随机变量 X, Y 都服从均匀分布;
 - (B) 随机变量 X, Y 不一定服从均匀分布;
 - (C) 随机变量 X. Y 一定不服从均匀分布:
 - (D) 随机变量 X + Y 服从均匀分布.

三、解答题

1. 设二维随机变量(X, Y) 的概率密度为

$$f(x, y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) 求 $P\{X > 2Y\}$; (2) 求 Z = X + Y的概率密度 $f_z(z)$.
- 2. 设随机变量 X 与 Y 独立同分布, X 的概率密度为

$$f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

求 X + Y 和 X - Y 的概率密度.

3. 设随机变量 $X \sim U(0, 1), Y \sim E(1)$ 且 X 与 Y 相互独立, 求 Z = X + Y 的密度函数.

练习 4.1

(4.1 数学期望)

一、填空题

1. 已知
$$X$$
 的密度函数 $f_X(x) = \begin{cases} \frac{1}{2} \mathrm{e}^{-\frac{x}{2}}, & x > 0, \\ 0, & x \leq 0, \end{cases}$ Y 的密度函数 $f_Y(x) = \begin{cases} 8\mathrm{e}^{-8x}, & x > 0, \\ 0, & x \leq 0, \end{cases}$ $X = Y$

相互独立,则E(XY) =

3. 设 X 表示 10 次独立重复射击命中目标的次数,每次射击命中率为 0.4,则 $E(X^2)$ =

二、冼择颢

1. 设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ x^3, & 0 \le x \le 1, \\ 1, & x > 1. \end{cases}$$

则
$$E(X) = ($$
)

$$(A) \int_{-\infty}^{+\infty} x^4 dx;$$

$$(B)\int_0^1 3x^3 dx$$

(A)
$$\int_0^{+\infty} x^4 dx$$
; (B) $\int_0^1 3x^3 dx$; (C) $\int_0^1 x^4 dx + \int_1^{+\infty} x dx$; (D) $\int_0^{+\infty} 3x^3 dx$.

$$(D)\int_{0}^{+\infty} 3x^3 dx$$

2. 已知 X 的分布律为

X	- 1	0	1
p	$\frac{1}{2}$	<u>1</u> 6	a

设 Y = 2X + 1, 则 Y 的数学期望 E(Y) 的值是()

(A)
$$-\frac{1}{6}$$
; (B) $\frac{2}{3}$; (C)1; (D) $\frac{29}{36}$.

$$(B) \frac{2}{}$$

(D)
$$\frac{29}{26}$$

3. 抛掷两个骰子, 至少有一个4点或5点出现时, 就说这些试验成功, 则在10次试验中, 成功次数 X 的期望是(

$$(A) \frac{10}{3};$$

(B)
$$\frac{55}{9}$$
; (C) $\frac{80}{9}$; (D) $\frac{50}{9}$.

$$(C) \frac{8}{6}$$

(D)
$$\frac{50}{9}$$

三、解答题

1. 一批产品中包括6件正品,4件次品,现随机地有放回抽取,每次取一件,设X表示直 至抽到正品为止所抽取的次数,求随机变量X的分布律及数学期望E(X).

2. 设随机变量 *X* 的概率密度为
$$f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0, \\ 0, & x \le 0. \end{cases}$$

对 X 进行独立重复的观测,直到第 2 个大于 3 的观测值出现时停止,记 Y 为次数.

- (1) 求 Y 的概率分布;
- (2) 求数学期望 E(Y).
- 3. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{2}\cos\frac{x}{2}, \ 0 \le x \le \pi, \\ 0, \ \text{其他}, \end{cases}$

示观察值大于 $\frac{\pi}{3}$ 的次数.

- (1) 求 Y 的概率分布;
- (2) 求 Y² 的数学期望.

练习4.2 (4.2 方差和矩)

		填空题
_	`	埧仝赵

学院

- 1. 设 X 是随机变量, 若 $X \sim N(\mu, \sigma^2)$, 则正态分布的前四阶中心矩分别为 μ_1 = $\mu_2 =$ $\mu_3 =$ $\mu_4 =$ $\mu_4 =$
- 2. 设随机变量 X 与 Y 相互独立,且 $X \sim N(1,2)$, $Y \sim N(0,1)$. 令 Z = -Y + 2X + 3.则 D(Z) =
 - 3. 设 X 和 Y 是两个相互独立的随机变量,其概率密度分别为 $f_X(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0. & 其他 \end{cases}$

$$f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & 其他 \end{cases}$$
,求 $D(X + Y) = \underline{\hspace{1cm}}$.

- 二、选择题
- 1. 若 $E(\xi) = 6$, $D(\xi) = 4$, 则 ξ 可能的分布为().
- (A) 参数为 $\lambda = 6$ 的泊松分布;
- (B) 区间(0, 12) 上的均匀分布;
- (C) 参数 n = 18, $p = \frac{1}{3}$ 的二项分布; (D) 参数 $\theta = \frac{1}{2}$ 的指数分布.
- 2. 设随机变量 X, Y 不相关, 且 E(X) = 2, E(Y) = 1, DX = 3, 则 E(X(X + Y 2)) = 1).
 - (A) 3;
- (B)3; (C) -5; (D)5.
- 3. 设随机变量 X 服从参数为 θ 的指数分布, 且已知 E[(X-1)(X+2)] = -1, 则 E(X)= ().
 - (A) 1/2;
- (B) 1; (C)2; (D)3.

- 三、解答题
- 1. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} x, \ 0 < x \le 1, \\ A + Bx, \ 1 < x \le 2, 且 E(X) = 1, 求: (1) D(X). \\ 0. 其他. \end{cases}$
- (2)Y = lnx 的密度函数.
 - 2. 设连续型随机变量 X 的分布函数 $F(X) = \begin{cases} 0, & x < -1, \\ a + b \arcsin x, & -1 \leq x \leq 1, 求 a, b, \\ 1, & x > 1 \end{cases}$
- $E(X) \setminus D(X)$.
- 3. 已知随机变量 X 的概率密度为 $f(x) = \begin{cases} 1 |1 x|, & 0 < x < 2, \\ 0, &$ 其他. $x \in X^* = \frac{X E(X)}{\sqrt{D(X)}}$ 的概率密度.

练习 4.3

(4.3 协方差、相关系数和协方差矩阵)

	填容题
 `	埧仝赵

- 1. 设随机变量 X 和 Y 的方差分别是 D(X) = 4 , D(Y) = 9 , 而相关系数 $\rho_{XY} = -0.5$, 则和 D(X Y) = -0.5 .
 - 2. 设二维随机变量(X, Y) ~ $N(\mu, \mu, \sigma^2, \sigma^2, 0)$, 则 $E(XY^2)$ = . .
 - 3. 若D(X) = 25, D(Y) = 36, $\rho_{XY} = 0.4$, 则 $Cov(X, Y) = ______, D(X + Y) = ______,$

 $D(X - Y) = \underline{\hspace{1cm}}.$

- 二、选择题
- 1. 设随机变量 X 和 Y 相互独立且同分布,记 U=X-Y, V=X+Y,则随机变量 U 和 V 必然(
 - (A) 不独立;

(B) 独立;

(C) 相关系数不为零:

- (D) 相关系数为零.
- 2. 设随机变量 $X \sim N(0, 1), Y \sim N(1, 4),$ 且相关系数 $\rho_{yy} = 1,$ 则()
- $(A)P\{Y=-2X-1\}=1;$
- $(B)P\{Y=2X-1\}=1;$
- $(C)P\{Y = -2X + 1\} = 1;$
- $(D)P\{Y=2X+1\}=1.$
- 3. 随机变量 $X \setminus Y = X + Y$ 的方差满足 D(X + Y) = D(X) + D(Y) 是()
- (A)X 和 Y 不相关的充分条件, 但不是必要条件;
- (B) X 和 Y 不相关的必要条件, 但不是充分条件;
- (C) X 和 Y 独立的必要条件, 但不是充分条件;
- (D)X和Y独立的充分必要条件.
- 三、解答题
- 1. 设随机变量 X 与 Y 的概率分布分别为

X	0	1
P	1/3	2/3

Y	- 1	0	1
P	1/3	1/3	1/3

且 $P{X^2 = Y^2} = 1$,求

- (1) 二维随机变量(X, Y) 的概率分布;
- (2)Z = XY的概率分布;

- (3)X与Y的相关系数 ρ_{XY} .
- 2. 设随机变量 X 和 Y 的联合分布律为

Y	- 1	0	1
- 1	1/8	1/8	$\frac{1}{8}$
0	1/8	0	1/8
1	1 8	1/8	1/8

验证 X, Y 不相关, 但 X, Y 不相互独立.

- 3. 设随机变量 X 的概率密度 $f(x) = Ae^{-|x|}$, $-\infty < x < +\infty$, 求: (1) 系数 $A \otimes X$ 的分布函数:
- (2)X 的期望 E(X) 及方差 D(X);
- (3)X与 | X | 的协方差, X与 | X | 是否不相关?

练习4.4

(4.4 大数定律与中心极限定理)

→ 、	填空题
`	751.00

- 1. 设随机变量 X 满足: $E(X) = \mu$, $D(X) = \sigma^2$,则由 Chebyshev 不等式,有 $P\{\mid X \mu \mid \ge 4\sigma\}$.
- 2. 一颗骰子连续掷 4 次, 点数总和记为 X, 用切比雪夫不等式估计 $P \mid 10 < X < 18 \mid$.
- 3. 设随机变量 X 的数学期望 E(X) = 75,方差 D(X) = 5,且 $P\{\mid X 75 \mid \geq k\} \leq 0.05$,则 $k \geq 1$
- 4. 设随机变量 X 和 Y 的数学期望相同,方差分别为 1 和 4,X 与 Y 相关系数为 0. 5,则根据切比雪夫不等式有 $P\{\mid X-Y \mid \geq 6\} \leq$ ______.

二、选择题

1. 设随机变量 X_1, X_2, \dots, X_9 独立同分布, $E(X_i) = 1, D(X_i) = 1, i = 1, 2, \dots, 9, 令 <math>S_9$ = $\sum_{i=1}^{9} X_i$,则对 $\forall \varepsilon > 0$,由 Chebyshev 不等式可直接得出()

$$(A)P(\mid S_9 - 1 \mid < \varepsilon) \ge 1 - \frac{1}{\varepsilon^2};$$

$$(B)P(|S_9 - 9| < \varepsilon) \ge 1 - \frac{9}{\varepsilon^2};$$

$$(C)P(|S_9 - 9| < \varepsilon) \ge 1 - \frac{1}{\varepsilon^2};$$

$$(\mathrm{D})P(\mid \frac{1}{9}S_9 - 1 \mid <\varepsilon) \geq 1 - \frac{1}{\varepsilon^2}.$$

2. 设随机变量 X 的方差存在, 并且满足不等式 $P\{\mid X - E(X) \mid \ge 3\} \le \frac{2}{9}$, 则一定有)

$$(A)D(X) = 2;$$

$$(B)P\{|X - E(X)| < 3\} < \frac{7}{9};$$

$$(C)D(X) \neq 2;$$

$$(D)P\{|X - E(X)| < 3\} \ge \frac{7}{9}.$$

三、解答题

- 1. 有甲、乙两种味道和颜色都极为相似的名酒各 4 杯. 如果从中挑 4 杯,能将甲种酒全部挑出来,算是成功一次.
 - (1) 某人随机地去猜, 问他成功一次的概率是多少?
- (2)某人声称他通过品尝能区分两种酒. 他连续试验 10次,成功 3次. 试推断他是猜对的,还是他确有区分的能力(各次试验是相互独立的).

- 2. 某校共有 4900 个学生,已知每天晚上每个学生到阅览室去学习的概率为 0.1,问阅览室要准备多少个座位,才能以 99%的概率保证每个去阅览室的学生都有座位.
- 3. 对于一个学校而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1个家长、2名家长来参加会议的概率分别是0.05,0.8,0.15. 若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布.求:
 - (1) 参加会议的家长数 X 超过 450 的概率;
 - (2) 有 1 名家长来参加会议的学生数不多于 340 的概率.

练习 5.1

(5.1 总体与样本)

<u> </u>	填空	题

- 1. 样本均值 $\bar{X} = ____,$ 样本方差 $S^2 = ____.$
- 3. 假设随机变量 $X \sim N(1, 2^2)$, X_1 , X_2 , … , X_{100} 是来自 X 的子样 , \overline{X} 为子样均值. 已知 $Y = a\overline{X} + b \sim N(0, 1)$, a > 0 , 则 $a = \underline{\hspace{1cm}}$, $b = \underline{\hspace{1cm}}$. 二、选择题
- 1. 设总体 X 的概率密度为 $f(x) = \frac{1}{2} e^{-|x|} (-\infty < x < +\infty), X_1, X_2, \dots, X_n$ 是 X 的简单随机,其样本方差为 S^2 ,则 $E(S^2) = ($)
 - (A)0; (B)1; (C)2; (D)3.
- 2. 设 (X_1, X_2, \cdots, X_n) 是来自总体X的一个样本, \overline{X} , S^2 分别为样本均值和样本方差, B_2 为样本中心二阶矩,则下列表达式错误的是()

$$(A) S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2};$$

$$(B) S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2} \right);$$

(C)
$$S^2 = \frac{n}{n-1}B_2$$
; (D) $B_2 = \frac{n}{n-1}S^2$.

3. 设总体 $X \sim B(1, P)$, X_1 , X_2 , \cdots , X_n 是来自总体 X 的样本 , \overline{X} 为样本均值 , 则 $P\{\overline{X} = \frac{k}{n}\} = ($

(A)
$$P$$
; (B) $P^{k}(1-P)^{n-k}$;

(C)
$$C_n^k P^k (1-P)^{n-k}$$
; (D) $C_n^k P^{n-k} (1-P)^k$.

三、从某工厂的产品中随机抽取 5 件, 测得其直径分别为(单位: mm)97, 104, 102, 99, 103.

- (1) 写出总体、样本值, 样本容量;
- (2) 求样本观测值的均值和方差.

四、设 X_1 , X_2 , …, X_n 为来自 Poisson 分布 $\pi(\lambda)$ 的一个样本, \overline{X} , S^2 分别为样本均值和样本方差, 求 $E(\overline{X})$, $D(\overline{X})$, $E(S^2)$.

五、设总体 $X \sim N(\mu, 4)$, X_1 , X_2 , $\cdots X_n$ 为取自总体的一个样本, \overline{X} 为样本均值.

(1) 求 (X_1, \dots, X_n) 的联合概率密度;(2) 指出 $2X_1 + X_2^2$, $X_3 - \mu$, $\min_{1 \le i \le n} X_i$ 中哪些是统计量,哪些不是统计量;(3)n 应取多大时,才能使 $P\{|\overline{X} - \mu| \le 0.1\} \ge 0.95$?

练习 5.2

(5.2 统计学的三大分布)

一、填空题

- 1. 设 X_1 , X_2 , … X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的一个样本, 则 $\sum_{i=1}^{20} \frac{(X_i \mu)^2}{\sigma^2}$ ~
- 2. 设 X_1 , X_2 , X_3 为来自总体 $X \sim (0, \delta^2)$ 的简单随机样本, 则统计量 $S = \frac{X_1 X_2}{\sqrt{2} + X_1}$ ~
- 二、单项选择题
- 1. 设 $X_1, X_2, \dots, X_n, \dots, X_{n+m}$ 是来自正态总体 $N(0, \sigma^2)$ 的容量为n+m 的样本,则统

计量
$$V = \frac{m \sum_{i=1}^{n} X_i^2}{n \sum_{i=n+1}^{n+m} X_i^2}$$
 服从的分布是()

(A)F(m,n)

(B)F(n-1, m-1)

(C)F(n, m)

- (D)F(m-1, n-1)
- 2. 记 $F_{1-\alpha}(m, n)$ 为自由度为 m 与 n 的 F 分布的 $1-\alpha$ 分位数,则有(

$$(A) F_{\alpha}(n, m) = \frac{1}{F_{1-\alpha}(m, n)};$$

(B)
$$F_{1-\alpha}(n, m) = \frac{1}{F_{1-\alpha}(m, n)};$$

$$(C) F_{\alpha}(n, m) = \frac{1}{F_{\alpha}(m, n)};$$

(D)
$$F_{\alpha}(n, m) = \frac{1}{F_{1-\alpha}(n, m)}$$
.

3. 设随机变量 $T \sim t(n)$, 则 $\frac{1}{r^2} \sim ($

$$(A)\chi^2(n)$$
;

- (B) F(1, n); (C) F(n, 1); (D) $t(n^2)$.

三、设总体 $X \sim N(0, \delta^2)$, X_1 , X_2 , \cdots , X_{2n} 为 X 的简单随机样本,求 $\frac{X_1^2 + X_3^2 + \cdots + X_{2n-1}^2}{X_2^2 + X_2^2 + \cdots + X_2^2}$ 的分布.

四、设 X_1, X_2, \dots, X_{16} 为取自总体 $X \sim N(0, 0.5^2)$ 的一个简单随机样本,求 $P\{\sum_{i=1}^{16} X_i^2 \ge 8\}$.

练习 5.3

(5.3 正态总体下几个常见的抽样分布)

一、填空题

1. 设 \overline{X} 和 S^2 分别为取自总体 $X \sim N(\mu, \sigma^2)$ 的样本容量为 n 的样本均值和样本方差,则

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \underline{\hspace{1cm}}, \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim \underline{\hspace{1cm}}, \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} \sim \underline{\hspace{1cm}}.$$

2. 设 X_1, X_2, \dots, X_n 是取自总体 $X \sim N(\mu, \sigma^2)$ 的一个简单随机样本, \overline{X} 为样本均值,

$$Q^2 = \sum_{i=1}^n (X_i - \overline{X})^2$$
, $MY = \frac{\overline{X} - \mu}{Q} \sqrt{n(n-1)} \sim \underline{\qquad}$

3. 设总体 $X \sim N(1, 4)$, 从 X 中抽得样本 X_1 , X_2 , X_3 , X_4 , 记 $Y = a(X_1 - 2X_2 + c)^2 + b$ $(3X_3 - 4X_4 + d)^2$, 则 a =______, b =______, c =______, d =______ 时, Y 服从 X^2

分布,自由度为 .

二、选择题

1. 设总体 $X \sim N(1, 9)$, X_1 , X_2 , \cdots , X_9 是取自总体 X 的样本,则()

(A)
$$\frac{\overline{X} - 1}{2} \sim N(0, 1)$$
;

(B)
$$\frac{X-1}{1} \sim N(0, 1)$$
;

(C)
$$\frac{X-1}{4} \sim N(0, 1)$$
;

(D)
$$\frac{\overline{X} - 1}{\sqrt{2}} \sim N(0, 1)$$
.

2. 设 X_1 , X_2 , …, X_n 为取自 $N(\mu, \sigma^2)$ 的样本, 统计量 $Y = n\left(\frac{X-\mu}{S}\right)^2$, 则(

$$(A) Y \sim \chi^2(n-1)$$
;

(B)
$$Y \sim t(n-1)$$
;

$$(C)Y \sim F(n-1, 1);$$

(D)
$$Y \sim F(1, n-1)$$
.

3. 设总体 $X \sim N(\mu, \sigma^2)$, X_1 , X_2 , …, X_n 是取自总体 X 的样本, \overline{X} 为样本均值, 记

$$S_{1}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, S_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, S_{3}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \mu)^{2}, S_{4}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2}, M$$

服从自由度为n-1的t分布的随机变量是T=(

(A)
$$\frac{X-\mu}{S_1/\sqrt{n-1}}$$
;

(B)
$$\frac{\overline{X} - \mu}{S_2 / \sqrt{n-1}}$$
;

(C)
$$\frac{\overline{X} - \mu}{S_2 / \sqrt{n-1}}$$
;

(D)
$$\frac{\overline{X} - \mu}{S_4 / \sqrt{n-1}}$$
.

三、设 X_1, X_2, \cdots, X_{25} 为来自总体N(3, 100) 的简单随机样本, \overline{X} 、 S^2 分别是样本均值和样本方差,求: $(1)P\{0 < \overline{X} < 6\}$; $(2)P\{57.7 < S^2 < 151.73\}$.

四、设 X_1 , X_2 , X_3 为取自总体 $X \sim N(0, \sigma^2)$ 的一个样本,求 $P\left\{\left(\frac{X_1}{X_3} + \frac{X_2}{X_3}\right)^2 \ge 79.72\right\}$.

五、设总体 $X \sim N(50, 36)$, $Y \sim N(46, 16)$, 从总体 X 中抽取容量为 9 的样本, 从总体 Y 中抽取容量为 16 的样本, 求下列概率.

$$(1)P\{0 < \bar{x} - \bar{y} < 8\}; (2)P\left\{\frac{S_1^2}{S_2^2} < 5.94\right\}.$$

练习 6.1

(6.1 参数的点估计)

	填容题
 `	埧仝赵

- 1. 总体 X 的均值 μ 和方差 σ^2 的矩估计量分别为 和 .
- 2. 设 X_1, X_2, \dots, X_n 是来自区间 [$-\alpha, \alpha$] 上均匀分布的总体 X 的简单随机样本,则参数 α 的矩估计量 $\hat{\alpha}$ =
- 3. 某地区的年降雨量 $X \sim N(\mu, \sigma^2)$, 现对其年降雨量连续进行 5 次观察, 得数据为: (单位: mm) 587 672 701 640 650, 则 σ^2 的矩估计量为 , σ^2 的矩估计值为

二、单项选择题

1. 设总体 $X \sim B(m, p)$, 其中 m 是正整数, $0 为未知参数, <math>X_1, X_2, \dots, X_n$ 为 X_n 的一个样本,则p的矩估计量是(

$$(A)\overline{X};$$

(B)
$$\frac{\overline{X}}{n}$$

(B)
$$\frac{X}{n}$$
; (C) $\frac{X}{m}$;

- (D) $m\overline{X}$.
- 2. 设 X_1, X_2, \dots, X_n 是来自区间 [$-\alpha, \alpha$] 上均匀分布的总体X的简单随机样本,则参数 α 的最大似然估计量 $\hat{\alpha}$ = (

$$(A) \max_{1 \le i \le n} (X_i)$$

(B)
$$\max_{1 \leq i \leq n} (|X_i|)$$

$$(C) - \min_{1 \le i \le n} (X_i)$$

(D)
$$-\min_{1 \le i \le n} (|X_i|)$$

3. 设总体 X 的概率密度为 $f(x) = \begin{cases} \theta x^{\theta-1} & 0 < x < 1 \\ 0 & 其他 \end{cases}$, $\theta > 0$,则 θ 的矩估计量为(

$$(A)\overline{X}$$
;

(B)
$$\frac{\overline{X}}{1+\overline{Y}}$$
; (C) $\frac{\overline{X}}{1-\overline{Y}}$;

$$(C) \frac{X}{1 - \overline{y}}$$

(D)
$$\frac{\overline{X}-1}{\overline{Y}}$$
.

三、设总体 X 的概率分布为

X	0	1	2	3
\overline{P}	θ^2	$2\theta(1-\theta)$	θ^2	$1-2\theta$

其中 $\theta(0 < \theta < \frac{1}{2})$ 是未知参数,利用总体 X 的如下 8 个样本值:

 $\bar{x}(1)\theta$ 的矩估计值;

 $(2)\theta$ 的极大似然估计值.

四、设 X_1, X_2, \dots, X_n 为总体X 的样本, X 的密度函数为:

$$f(x) = \begin{cases} (\beta + 1)x^{\beta}, & 0 < x < 1, \beta > -1 \\ 0, & \text{其他} \end{cases}$$

求参数 β 的极大似然估计量与矩估计量.

五、某人作独立重复射击,每次击中目标的概率为p,不中的概率为1-p,他在第X次射击时,首次击中目标.

- (1) 写出 X 的分布律;
- (2) 以此 X 为总体,从中抽取简单随机样本 (X_1,X_2,\cdots,X_n) ,试求未知参数 p 的矩估计量和极大似然估计量.

班级

学号

练习 6.2

(6.2 估计量的评选标准)

一、填空题

1. 样本 X_1 , X_2 , X_3 来自总体 $X \sim N(\mu, \sigma^2)$, 且 $Y = \frac{1}{3}X_1 + \frac{1}{6}X_2 + aX_3$ 为 μ 的无偏估计 量,则 a =

2. 如果 $\hat{\theta}_1$, $\hat{\theta}_2$ 都是总体未知参数 θ 的估计量, 称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效,则满足 .

3. 设 $X_1, X_2, \dots, X_n (n > 2)$ 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, \overline{X} 为样本均值,

已知 $T = C(X_1 + X_n - 2X)^2$ 是 σ^2 的无偏估计(或 $ET = \sigma^2$), 则常数 C 必为

二、选择题

1. 设 X_1 , X_2 为总体 X 的样本,则以下总体期望 E(X) 的无偏估计量中最有效的是).

$$(A) d_1(X_1, X_2) = \frac{1}{4} X_1 + \frac{3}{4} X_2; (B) d_2(X_1, X_2) = \frac{1}{3} X_1 + \frac{2}{3} X_2;$$

(B)
$$d_2(X_1, X_2) = \frac{1}{3}X_1 + \frac{2}{3}X_2$$

(C)
$$d_3(X_1, X_2) = \frac{1}{2}X_1 + \frac{1}{2}X_2;$$

(D)
$$d_1(X_1, X_2) = \frac{2}{5}X_1 + \frac{3}{5}X_2.$$

2. 设 $\hat{\theta}_1$, $\hat{\theta}_2$ 是参数 θ 的两个估计量, 下面正确的是 (

 $(A)D(\hat{\theta}_1) > D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 为比 $\hat{\theta}_2$ 有效的估计量;

 $(B)D(\hat{\theta}_1) < D(\hat{\theta}_2)$, 则称 $\hat{\theta}_1$ 为比 $\hat{\theta}_2$ 有效的估计量;

 $(C)\hat{\theta}_1, \hat{\theta}_2$ 是参数 θ 的两个无偏估计量, $D(\hat{\theta}_1) > D(\hat{\theta}_2)$, 则称 $\hat{\theta}_1$ 为比 $\hat{\theta}_2$ 有效的估计量;

 $(D)\hat{\theta}_1, \hat{\theta}_2$ 是参数 θ 的两个无偏估计量, $D(\hat{\theta}_1) < D(\hat{\theta}_2)$, 则称 $\hat{\theta}_1$ 为比 $\hat{\theta}_2$ 有效的估计量.

3. 设 X_1, X_2, \dots, X_n 是来自参数为 λ 的泊松总体 X 的简单随机样本,则可以构造参数 λ^2 的无偏估计量(或数学期望为 λ^2 的统计量)(

(A)
$$T = \frac{1}{n} \sum_{i=1}^{n} X_i (X_i - 1).$$

(B)
$$T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

(C)
$$T = (\overline{X})^2$$

(D)
$$T = S^2$$

三、设总体 X 的概率密度为 $\varphi(x,\theta) = \begin{cases} \frac{1}{\theta} \mathrm{e}^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 其中 $\theta > 0$ 为未知参数, X_1, \cdots ,

 X_n 是来自 X 的样本, 试求: $(1)\theta$ 的极大似然估计量 $\hat{\theta}$; $(2)\hat{\theta}$ 是否是 θ 的无偏估计量; $(3)D(\hat{\theta}).$

四、设总体
$$X$$
 的概率密度为: $f(x;\theta) = \begin{cases} \frac{2x}{\theta^2}, & 0 < x < \theta, \\ 0, & \text{其中}\,\theta \in (0, +\infty) \text{ 为未知参} \end{cases}$

数, X_1 , X_2 是来自总体 X 的简单随机样本.

$$\Leftrightarrow T = \max\{X_1, X_2\},\$$

- (1) 求 T 的概率密度;
- (2) 确定 a, 使得 aT 为 θ 的无偏估计.

五、设总体
$$X$$
 的分布密度为 $f(x, \theta) = \begin{cases} \frac{1}{\theta - 1} & 1 < x < \theta \\ 0 & 其他 \end{cases}$, X_1, X_2, \dots, X_n 为 X 的样本.

求: $(1)\theta$ 的矩法估计量 $\hat{\theta}$; $(2)E(\hat{\theta})$, 并判断 $\hat{\theta}$ 是否为 θ 的无偏估计量.

练习6.3

(6.3 区间估计)

一、填空题

1. 设母体 $X \sim N(\mu, \sigma^2)$, σ 未知, 则在求均值 μ 的区间估计时, 使用的随机变量为

3. 设总体 $X \sim N(\mu, 2^2)$, x_1 , $x_2 \cdots x_{100}$ 是样本观察值, 已知 μ 的置信区间为(1.171, 1.829), 则置信水平为

二、选择题

1. 已知一批零件的长度服从正态分布 $X \sim N(\mu, 2^2)$ (单位: cm), 其中 μ 未知, 现从中随机抽取 16 个零件, 测得样本均值为 10 cm, 则 μ 的置信度为 0. 90 的置信区间为()

(A)
$$\left(10 - \frac{1}{2}u_{0.05}, 10 + \frac{1}{2}u_{0.05}\right)$$
 (B) $\left(10 - \frac{1}{2}u_{0.1}, 10 + \frac{1}{2}u_{0.1}\right)$ (C) $\left(10 - \frac{2}{\sqrt{15}}u_{0.05}, 10 + \frac{2}{\sqrt{15}}u_{0.05}\right)$ (D) $\left(10 - \frac{2}{\sqrt{15}}u_{0.1}, 10 + \frac{2}{\sqrt{15}}u_{0.1}\right)$

- 2. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, 若样本容量 n 和置信水平 1α 都不变, 则对于不同的样本观测值, 总体均值 μ 的置信区间的长度()
 - (A) 变长;
- (B) 变短;
- (C) 保持不变:
- (D) 不能确定.

- 3. 总体均值的区间估计中,正确的是 ()
- (A) 置信度 1α 一定时,子样容量增加,则置信区间长度变长;
- (B) 置信度 1α 一定时, 子样容量增加, 则置信区间长度变短;
- (C) 置信度1-α增大,则置信区间长度变短;
- (D) 置信度 1 α减少,则置信区间长度变短.
- 三、某自动包装机包装洗衣粉, 其重量服从正态分布, 今随机抽查 12 袋测得其种类(单位: g) 分别为 1001, 1004, 1003, 1000, 997, 999, 1004, 1000, 996, 1002, 998, 999
 - (1) 求总体均值 μ 的95%的置信区间;
 - (2) 求总体方差 σ^2 的 95% 的置信区间;
 - (3) 若已知 σ^2 = 9, 求 μ 的 95% 的置信区间.

四、研究两种固体燃料火箭推进器的燃烧率,设两者都服从正态分布,并且已知燃烧率的标准差近似为 0.05 cm/s,取样本容量为 $n_1 = n_2 = 20$,得燃烧率的样本均值分别为 $\bar{x}_1 = 18$ cm/s, $\bar{x}_2 = 24$ cm/s,求两燃烧率总体均值差 $\mu_1 - \mu_2$ 的置信度为 0.99 的置信区间.

五、研究由机器 A 和机器 B 生产的钢管的内径(单位: mm),随机抽取机器 A 生产的管子 16 只,测得样本方差 $S_1^2=0.34$;抽取机器 B 生产的管子 13 只,测得样本方差 $S_2^2=0.29$.设两样本相互独立,且设机器 A,机器 B 生产的管子的内径分别服从正态分布 $N(\mu_1,\sigma_1^2)$, $N(\mu_2,\sigma_2^2)$,这里 μ_i , $\sigma_i^2(i=1,2)$ 均未知. 试求方差比 σ_1^2/σ_2^2 的置信水平为 0.90 的置信区间.

练习 7.1 (7.1 假设检验的一般理论)

一、填空题

- 1. 某工厂所生产的某种细纱支数服从正态分布 $N(\mu_0, \sigma_0^2)$, μ_0 , σ_0^2 为已知, 现从某日生产的一批产品中随机抽取 16 缕进行支数测量, 求得子样均值和子样方差, 要检验细纱支数的均匀度是否变劣, 则应提出假设
- 3. 设 X_1, X_2, \dots, X_n 为来自正态总体 $X \sim N(\mu, 2)$ 的简单随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, Z_\alpha$ 表示标准正态分布的上侧 α 分位数,假设检验问题 $H_0: \mu \leq 1, H_1: \mu > 1$ 的显著性水平为 α 检验的拒绝域为

二、单项选择题

- 1. 在假设检验中, 记 H_1 为备择假设,则犯第一类错误的是指().
- (A)H₁真,接受H₁;

(B)H₁ 假,接受H₁;

(C)H₁真, 拒绝 H₁;

- (D) H₁ 假, 拒绝 H₁.
- 2 设总体 X 服从正态分布 $X \sim N(\mu, \sigma^2)$, X_1 , X_2 , \cdots , X_n 为来自正态总体 X 的简单随机样本,据此样本检验: $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$, 则()
 - (A) 如果在检验水平 $\alpha = 0.05$ 下拒绝 H_0 , 那么在检验水平率 $\alpha = 0.01$ 下必拒绝 H_0 ;
 - (B) 如果在检验水平 $\alpha=0.05$ 下拒绝 H_0 , 那么在检验水平率 $\alpha=0.01$ 下必接受 H_0 ;
 - (C) 如果在检验水平 $\alpha = 0.05$ 下接受 H_0 , 那么在检验水平率 $\alpha = 0.01$ 下必拒绝 H_0 ;
 - (D) 如果在检验水平 $\alpha = 0.05$ 下接受 H_0 , 那么在检验水平率 $\alpha = 0.01$ 下必接受 H_0 .
- 3. 在假设检验中, 用 α 表示犯第一类错误的概率, β 表示犯第二类错误的概率, 则当样本容量一定时, 下列说法正确的是().
 - (A)α减少β也减少;
 - $(B)\alpha$ 增加 β 也增加;
 - (C) α 与 β 不能同时减少,减少其中一个,往往另一个会增加;
 - $(D)\alpha$ 的大小与 β 无关.

三、已知总体 X 的概率密度只有两种可能,设

$$H_0: f(x) = \begin{cases} \frac{1}{2}, & 0 \le x \le 2, \\ 0, & \text{ 其他,} \end{cases} \quad H_1: f(x) = \begin{cases} \frac{x}{2}, & 0 \le x \le 2, \\ 0, & \text{ 其他,} \end{cases}$$

对 X 进行一次观测,得样本 X_1 ,规定样本 $X_1 \ge \frac{3}{2}$ 时拒绝 H_0 ,否则就接受 H_0 ,则此检验的第一类错误概率 α 和第二类错误概率 β 分别为多少?

四、从某种试验物中取出 24 个样品,测量其发热量,计算得 \bar{x} = 11958,样本标准差 s = 323,问以 5%的显著水平是否可认为发热量的期望值是 12100(假定发热量是服从正态分布的)?

五、设 X_1 , X_2 , …, X_{16} 是来自正态总体 $X \sim N(\mu, 4)$ 的样本,考虑检验问题: H_0 : $\mu = 6$, H_1 : $\mu \neq 6$ 拒绝域为 $W = \{ |\bar{x} - 6| \ge c \}$, (1) 试求 c, 使得检验的显著性水平为 0.05. (2) 求该检验在 $\mu = 6.5$ 处犯第二类错误的概率 β .

练习 7.2

(7.2 正态总体均值与方差的假设检验)

一、填空题

学院

- 1. 设 X_1, X_2, \dots, X_n 为取自总体 $X \sim N(\mu, \sigma^2)$ 的一个样本, 对于给定的显著性水平 α , 已知关于 σ^2 检验的拒绝域为 $\chi^2 \leq \chi^2_{1-\sigma}(n-1)$,则相应的备择假设 H_1 为 .
- 2. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, 在显著性水平 0.05 下, 检验假设 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$,拒绝域是
- 3. 设 $X_1,\,X_2,\,\cdots,\,X_n$ 是取自总体 $X\sim N(\mu,\,\sigma^2)$ 的简单样本,其中 u , σ^2 未知,记 $\overline{X}=$

二、选择题

1. 设总体X服从正态分布 $N(\mu, 4)$,从中取出一个容量为25的简单随机样本,测得样本 均值X = 10, $\alpha = 0.05$, 则在以下假设中将被拒绝的 H_0 是().

$$(A)H_0: \mu = 9;$$

(B)
$$H_0$$
: $\mu = 9.5$;

$$(C)H_0: \mu = 10;$$

(D)
$$H_0$$
: μ = 10.5.

2. 已知 $X \sim N(\mu_1, \sigma_1^2)$ 和 $Y \sim N(\mu_2, \sigma_2^2)$ 为检验总体 X 的均值大于 Y 的均值,则应作检 验的假设为(

- (A) $H_0: \mu_1 > \mu_2, H_1: \mu_1 \leq \mu_2$.
- (B) $H_0: \mu_1 \ge \mu_2, H_1: \mu_1 < \mu_2$
- (C) $H_0: \mu_1 < \mu_2, H_1: \mu_1 \geqslant \mu_2$.
- (D) $H_0: \mu_1 \leq \mu_2, H_1: \mu_1 > \mu_2$
- 3. 设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$ 相互独立, 样本容量分别为 n_1, n_2 , 样本方差 分别为 s_1^2 , s_2^2 , 在显著性水平 α 下, 检验 H_0 : $\sigma_1^2 \ge \sigma_2^2$, H_1 : $\sigma_1^2 < \sigma_2^2$ 的拒绝域为(

(A)
$$\frac{s_2^2}{s_1^2} \ge F_{\alpha}(n_2 - 1, n_1 - 1);$$

(B)
$$\frac{s_2^2}{s_1^2} \ge F_{1-\frac{\alpha}{2}}(n_2 - 1, n_1 - 1);$$

(C)
$$\frac{s_2^2}{s_1^2} \le F_{\alpha}(n_1 - 1, n_2 - 1);$$

(D)
$$\frac{s_2^2}{s_1^2} \le F_{1-\frac{\alpha}{2}}(n_1 - 1, n_2 - 1).$$

三、从某种试验物中取出 24 个样品,测量其发热量,计算得 \bar{x} = 11958,样本标准差 s = 323, 假定发热量是服从正态分布, (1) 以 5% 的显著水平是否可认为发热量的期望值是 12100? (2) 以 1% 的显著水平是否可认为发热量的期望值是 12100?

四、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机 器工作为正常,每天定时检验机器情况,现抽取 16 罐,测得平均重量 \overline{X} = 252 克,样本标准差 S=4克、假定罐头重量服从正态分布、试问该机器工作是否正常?(分别讨论 $\alpha=0.1,\alpha=$ 0.05 和 $\alpha = 0.01$ 的三种情况)

五、有甲、乙两台机床加工同样产品,从此两台机床加工的产品中随机抽取若干产品,测得产品直径(单位: mm) 为机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9; 机床乙: 19.7, 20.8, 20.5, 19.8, 19.4, 20.6, 19.2. 试比较甲、乙两台机床加工的精度有无显著差异($\alpha=5\%$)? (提示: 机床甲样本均值 $\overline{X}=19.925$,样本方差 $s_1^2=0.2164$,机床乙样本均值 $\overline{Y}=20$,样本方差 $s_2^2=0.3967$. 要求先判断两总体方差是否相等,再判断两总体均值是否相等)

练习 7.3

(7.3 区间估计与假设检验的关系)

学院

- 1. 对正态总体的数学期望 μ 进行假设检验, 如果在显著性水平 0.05 下, 接受假设 $H_0: \mu = \mu_0$, 那么在显著性水平 0.01 下, H_0 .
- 2. 对正态总体的数学期望 μ 作区间估计, 如果在置信度 0.95 下, 置信区间是 (3.24 4.66),那么在显著性水平 0.05 下,假设 $H_0: \mu = \mu_0$ 的拒绝域是 ,接受 域是

二、单项选择题

- 1. 设总体 $X \sim N(\mu, \sigma^2)$, 样本容量为 n, 已知在显著性水平 0.05 下, 检验 $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$ 的结果是拒绝 H_0 , 那么在显著性水平 0.1 下, 检验 $H_0: \mu = u_0$, $H_1: \mu \neq u_0$ 的结果 是().
 - (A) 一定接受 H_o;

(B) 一定拒绝 Ho;

(C) 不一定接受 H_o:

- (D) 不一定拒绝 H_o.
- 2. 设总体 $X \sim N(\mu, \sigma^2)$, 样本容量为 n, 已知在显著性水平 0.01 下, 检验 H_0 : $\mu \geq \mu_0$, $H_1: \mu < \mu_0$ 的结果是拒绝 H_0 , 那么在显著性水平 0.05 下, 检验 $H_0: \mu = u_0$, $H_1: \mu \neq u_0$ 的结 果是().
 - (A) 一定接受 Ho;

(B) 一定拒绝 Ho;

(C) 不一定拒绝 Ho;

- (D) 以上说法都不对.
- 三、设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, μ 未知, x_1, x_2, \dots, x_n 是样本观察值. 已知 μ 的置 信水平为0.95的置信区间为(4.71,5.69),那么取显著性水平 $\alpha = 0.05$ 时,试检验假设: H_0 : $\mu = 5.0$, H_1 : $\mu \neq 5.0$.

四、设 X_1, X_2, \dots, X_n 是取自正态总体 $X \sim N(\mu, 1.21^2)$ 的样本,已知 μ 的置信水平为 1 - α 的置信区间是 $(\bar{x} - \frac{2}{\sqrt{n}}, \bar{x} + \frac{2}{\sqrt{n}})$, 求假设检验 $H_0: \mu = 2, H_1: \mu \neq 2$ 的拒绝域.

五、设 $X \sim N(\mu, 1)$, μ 未知, $\alpha = 0.05$, n = 16, 且由一样本算得 $\bar{x} = 5.2$. (1) 求参数 μ 的一个置信水平为 0.95 的置信区间. (2) 假设检验 H_0 : μ = 5.5, H_1 : $\mu \neq$ 5.5, 观察 μ = 5.5 是 否属于置信区间,并判断是否接受 H_0 . (3) 求右边检验问题 $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$ 的接受域, 并求μ 的单侧置信下限.