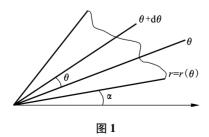
二维码 3-2 极坐标系下求平面图形的面积

设曲线由极坐标方程 $r = r(\theta)$ 表示,求由此曲线 $r = r(\theta)$ 及两射线 $\theta = \alpha$, $\theta = \beta$ 所围图形的面积(图 1),其中 $r(\theta)$ 在 $[\alpha,\beta]$ 上连续,且 $r(\theta) \ge 0$.

用元素法,在[α , β]中任取一个小角区间[θ , θ +d θ]. 与这个小区间 d θ 对应的那部分面积记为 dA(图中阴影部分). dA 近似地用半径 $r=r(\theta)$,中心角为 d θ 的扇形面积代替,即

$$\mathrm{d}A = \frac{1}{2}r^2(\theta)\,\mathrm{d}\theta$$
 从而有 $A = \int_{\alpha}^{\beta}\mathrm{d}A = \frac{1}{2}\int_{\alpha}^{\beta}r^2(\theta)\,\mathrm{d}\theta.$



例1: 求心形线 $r = a(1 + \cos\theta)$ 所围成的面积.

解: 如图 2 所示,此图形关于极轴对称,用 A_1 表示极轴上方那部分面积(图中阴影部分),则所求面积为

$$A = 2A_1 = 2 \cdot \frac{1}{2} \int_0^{\pi} a^2 (1 + \cos \theta)^2 d\theta = \frac{3}{2} \pi a^2$$

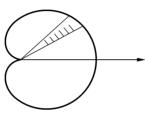


图 2