例 1.21 最小费用流问题实现

```
算法功能:寻找实现流量需要的最小费用流
修改参数: start_nodes: 路径开始节点
      end nodes:路径终止节点
      capacities:路径流量容量
      unit_costs:路径所需费用
      supplies:各节点流量要求
输出:最小费用
    流量路径及费用表格
from ortools.graph import pywrapgraph
start nodes = [0, 0, 1, 1,
                         2,
                             3, 3] # 路径开始节点
end nodes = [1,3,2,4,4,2,4] # 路径终止节点
capacities = [4,3,4,5,3,2,1] # 路径流量容量
unit_costs = [ 1, 2, 1, 4, 2, 2, 4] # 路径所需费用
supplies = [7, 0, 0, 0, -7] # 各节点流量要求,正为输出流量,负为输入流量(此例子
为0节点输出7流量到4节点)
min_cost_flow = pywrapgraph.SimpleMinCostFlow()
#添加每条路径
for i in range(0, len(start_nodes)):
   min cost flow.AddArcWithCapacityAndUnitCost(start nodes[i], end nodes[i],
                                         capacities[i], unit_costs[i])
for i in range(0, len(supplies)):
   min cost flow.SetNodeSupply(i, supplies[i])
if min cost flow. Solve() == min cost flow. OPTIMAL:
   print('Minimum cost:', min_cost_flow.OptimalCost())
   print('')
   print('Arc
                 Flow / Capacity Cost')
   for i in range (min cost flow. NumArcs()):
     cost = min cost flow.Flow(i) * min cost flow.UnitCost(i)
     %3s' % (
        min_cost_flow.Tail(i),
        min_cost_flow. Head(i),
        min cost flow. Flow(i),
        min_cost_flow.Capacity(i),
        cost))
else:
   print ('There was an issue with the min cost flow input.')
```