4.4 "传感器应用与信号检测"课程标准

一、课程基本信息

课程名称: 传感器应用与信号检测

课程代码: 111007

开课部门:车辆工程学院

适用专业:智能网联汽车技术

课程学时:56

课程学分: 3.5

开设学期:第3学期

二、课程性质与任务

(一) 课程性质

"传感器应用与信号检测"是智能网联汽车技术专业的专业核心课程,是学校 STEM 教学改革试点课程。本课程是针对智能网联汽车系统装调工、智能网联汽车测试评价工、智能网联汽车技术支持工程师等岗位所从事的汽车传感器装配调试、标定和检测,以及环境感知系统测试、自动驾驶软件测试等工作,培养常用传感器故障检修、传感器装调应用与创新等能力而设置的专业核心课程。

(二) 课程任务

本课程的主要任务以培养学生职业能力为目标,共四个学习项目 20 个学习任务。课程围绕传感器的结构、工作原理、电气原理与测试方法等知识,培养学生传感器电路分析能力、系统装调联调能力、常见故障处理能力、系统改进和设计创新应用等能力。课程融入企业价值观"正心正道 善为善成",深入挖掘课程思政元素,培养学生具有数字素养、精益求精的工匠精神、创新精神等职业素养,从而满足企业"明理、精工、创新"的岗位需求。

三、课程理念与思路

(一) 课程教学理念

本课程教学时应遵循理实结合的理念,学生在学习完理论知识后衔接该知识 对应的实验和操作环节。同时,在课程教学时应采取视频、随堂测试、分组任务 等多样化的信息教学手段。

(二) 课程教学思路

基于中车时代电动汽车股份有限公司、长沙中车智驭新能源科技有限公司、 华为投资控股有限公司、深圳市速腾聚创科技有限公司等企业的智能传感器装调、 传感器检测等岗位职业能力要求的基础上,遵循教育部发布的高等职业学校智能 网联汽车技术、汽车智能技术等专业教学标准,融合智能网联汽车测试装调、智 能网联汽车检测与运维等职业技能等级标准,确定本课程教学内容。

四、课程目标与要求

(一) 总体目标

本课程为 STEM 教学改革试点课程,引入 STEM 教育理念,坚持"正心正道,善为善成"课程思政,根据职业岗位特征,融入 1+X 证书标准、技能竞赛和创新创业内容,设计项目化课程结构,分类开发了课程思政案例库、企业典型工作任务库、创新作品库等资源,建设了线上线下课程教学资源。

课程引入 STEM 教育 6E 教学流程,基于企业真实工作任务,实施项目化教学改革,将每个任务学习划分成"在线学习、现场重演、工程探究、工程实践、现场评价、岗位实践"六个部分,要求学生以小组为单位,线上线下参与仿真学习、探究学习、技能训练、应用创新等学习活动,切实培养学生的职业能力、职业素养、综合能力和岗位适应性。

(二) 具体目标

1. 知识目标

- (1)掌握冷却液温度、驱动电机转速、车轮压力、转向角度、超声波雷达、 视觉传感器等典型传感器的结构、原理以及参数测量和标定方法;
- (2)掌握冷却液温度、驱动电机转速、车轮压力、转向角度、超声波雷达、 视觉传感器等典型传感器的检测方法;
- (3)掌握动力系统、底盘系统、环境感知系统多传感器系统的安装和联调 流程;
 - (4) 掌握多传感器系统的应用及创新设计方法。

2. 能力目标

- (1) 能收集检修技术标准、规范等技术资料;
- (2) 能正确使用装配工具, 拆装各传感器:

- (3) 能正确使用测量工具, 检测各传感器并判断技术状况:
- (4) 能设计传感器装配调试流程,对相关传感器系统进行装调:
- (5) 能对相关传感器系统进行故障排查:
- (6) 能对相关传感器多系统进行联调,并能对传感器的安装工艺、调试技 术等进行改进与应用创新。

3. 素质目标

- (1) 培养学生具有团队精神和协作精神,培养爱岗敬业、热爱劳动,敬业 乐业的工作作风:
 - (2) 培养学生具有质量意识、安全意识:
 - (3) 培养学生分析问题、解决问题的能力;
 - (4) 培养学生系统思维、科学精神, 勇于创新;
 - (5) 培养学生规范操作和责任担当的工匠精神;
 - (6) 培养学生具备一定的数字化素养。

五、课程结构与学时

课程对接汽车智能产品测试技术员、汽车自动驾驶系统测试技术员等岗位, 融入技能竞赛、双创比赛和 1+X 证书标准, 引入无人驾驶智能小巴、无人物流车 等横向项目作为教学任务载体,按照被动感知、主动感知、综合感知递进,重构 课程为四个项目,每个项目按照传感器装调岗位的工作流程设计"装调-联调-科 创"20个学习任务共56学时。

表 1 课程项目结构与学时配表

序号	学习项目	学习任务	参考学时
		任务1: 冷却液温度传感器装调★	2
		任务 2: 驱动电机转速传感器装调	2
1	动力系统传感器装	任务3: 驱动电机扭矩传感器装调★	2
	1	任务 4: 驱动电机位置传感器装调★	2
		任务 5: 动力系统多传感器联调●	4
		任务 6: 动力系统感器应用与创新	4
2	瓜鱼水乳口炒份衣	任务1: 车轮压力传感器装调★	2
Δ		任务2:转向角度传感器装调●	2

		任务3:制动踏板位置传感器装调★	2
		任务 4: 车身高度传感器装调★	2
		任务 5: 底盘系统多传感器联调★●	4
		任务 6: 底盘系统传感器应用与创新	4
		任务1:超声波雷达系统测试与装调★●	2
		任务 2: 毫米波雷达系统测试与装调	2
3	环境感知系统传感 器装调与应用	任务 3: 激光雷达系统测试与装调★	2
		任务 4: 视觉传感器系统测试与装调	2
		任务 5: 环境感知系统多传感器联调★●	4
		任务 6: 智能传感器应用与创新●	4
,	中车无人物流	任务1:无人物流车传感器整车集成	4
4	车综合调试	任务 2: 无人物流车传感器综合调试	4
	1	合计	56

六、学习内容与安排

(一) 任务 1.1 冷却液温度传感器装调

学习载体	温度传感器		
	素质目标	知识目标	能力目标
学习目标	1. 培养学生具有工程实践操作的安全意识; 2. 培养学生传感器测试与装调的规范操作; 3. 培养学生使用传感器调试软件的数字素养。	1. 掌握冷却液温度传感器的结构、组成以及参数测量和标定方法; 2. 掌握冷却液温度传感器的检测方法。	1. 能收集冷却液温度传感器的技术资料,规范拆装; 2. 能正确检测传感器,判断传感器技术状况; 3. 能设计装调流程,装调传感器并排查系统故障。
	思政元素	知识点	技能点
学习内容	安全意识、规范操作	结构、组成以及参数测量和 标定方法、检测方法	规范拆装冷却液温度传感器、判断技术状况、装调 ★

1. 采用 STEM 的 6E 教学流程开展教学,课前推送冷却液温度传感器装调的学习资源, 发布仿真练习任务,组织学生观看思政案例和创新作品案例;

教学建议

- 2. 建议本次任务在传感器检测实训室开展教学,训练学生专业核心技能;
- 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式 来开展学习评价。
- 4. 对接"智能网联汽车测试装调职业技能等级证书(中级)"1+X证书标准★

(二) 任务 1.2 驱动电机转速传感器装调

	T		
学习载体	转速传感器		
	素质目标	知识目标	能力目标
学习目标	1. 培养学生崇尚劳动、 热爱劳动的工作作风; 2. 培养学生具有传感器 检测的责任担当意识; 3. 培养学生使用传感器 调试软件的数字素养。	1. 掌握驱动电机转速传感器的结构、组成以及参数测量和标定方法; 2. 掌握驱动电机转速传感器的检测方法。	1. 能收集驱动电机转速传感器的技术资料,规范拆装; 2. 能正确检测传感器判断传感器技术状况; 3. 能设计装调流程,装调传感器并排查系统故障。
	思政元素	知识点	技能点
学习内容	躬身实干、耐心装调	结构、组成以及参数测量 和标定方法、检测方法	规范拆装驱动电机转速传感 器、判断技术状况、装调
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送驱动电机转速传感器装调学习资源发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在传感器检测实训室开展教学,训练学生专业核心技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。		

(三) 任务 1.3 驱动电机扭矩传感器装调

学习载体	扭矩传感器		
	素质目标	知识目标	能力目标
400	1. 培养学生新知识的学习热情和好奇心; 2. 培养学生具有传感器装调方案编制的系统思维; 3. 培养学生使用传感器调试软件的数字素养。	1. 掌握驱动电机扭矩传感器的结构、组成以及参数测量和标定方法; 2. 掌握驱动电机扭矩传感器的检测方法。	1. 能收集驱动电机扭矩传感器的技术资料,规范拆装; 2. 能正确检测传感器判断传感器技术状况; 3. 能设计装调流程,装调传感器并排查系统故障。
	思政元素	知识点	技能点
学习内容	精研本职、争先创优	结构、组成以及参数测量 和标定方法、检测方法	规范拆装驱动电机扭矩传感 器、判断技术状况、装调★

1. 采用 STEM 的 6E 教学流程开展教学,课前推送驱动电机扭矩传感器装调学习资源, 发布仿真练习任务,组织学生观看思政案例和创新作品案例;

- 教学建议 2. 建议本次任务在传感器检测实训室开展教学,训练学生专业核心技能;
 - 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式 来开展学习评价。

(四) 任务 1.4 驱动电机位置传感器装调

学习载体	位置传感器		
	素质目标	知识目标	能力目标
学习目标	1. 培养学生精研本职、 乐业敬业的工作态度; 2. 培养学生排查传感器 系统故障的科学思维; 3. 培养学生使用传感器 调试软件的数字素养。	1. 掌握驱动电机位置传感器的结构、组成以及参数测量和标定方法; 2. 掌握驱动电机位置传感器的检测方法。	1. 能收集驱动电机位置传感器的技术资料,规范拆装; 2. 能正确检测传感器判断传感器技术状况; 3. 能设计装调流程,装调传感器并排查系统故障。
	思政元素	知识点	技能点
学习内容	坚定信心、细致规范	结构、组成以及参数测量	规范拆装驱动电机位置传感
		和标定方法、检测方法	器、判断技术状况、装调★
	1. 采用 STEM 的 6E 教学》		器、判断技术状况、装调★ 电机位置传感器装调学习资源,
教学建议	发布仿真练习任务,组约 2.建议本次任务在传感	流程开展教学,课前推送驱动 识学生观看思政案例和创新作器检测实训室开展教学,训练	电机位置传感器装调学习资源, 作品案例;

(五) 任务 1.5 动力系统多传感器联调

学习载体	传感器等		
	素质目标	知识目标	能力目标
学习目标	1. 培养学生具有团队意识和协作精神; 2. 培养学生多传感器联调结果分析的质量意识; 3. 培养学生使用多传感器联路, 器联合调试软件的数字素养。	1. 掌握动力系统多传感器 联调的流程; 2. 掌握动力系统多传感器	1. 能收集动力系统多传感器 联调的技术资料; 2. 能正确检测传感器判断传 感器技术状况; 3. 能设计联调流程,联调动 力系统并排查系统故障。
学习内容	思政元素	知识点	技能点
144144	一丝不苟、惟精求事	多传感器联调的流程、联	设计联调流程,联调动力系

		调的检测方法●	统、排查系统故障
教学建议	布仿真练习任务,组织 2.建议本次任务在中车 车真岗真任务,训练学	学生观看思政案例和创新作品 电动校园工厂车间开展教学, 生专业核心技能和岗位能力; 性考核、终结性考核和增值的	联合调试任务到实车上体验真

(六) 任务 1.6 动力系统传感器应用与创新

学习载体	动力系统传感器		
	素质目标	知识目标	能力目标
学习目标	1. 培养学生具有勇于创新的创新思维; 2. 培养学生多传感器联合应用与创新的创新意识; 3. 培养学生使用 AI 大语言模型的数字素养。	1. 掌握动力系统多传感器 创新设计的基本原则; 2. 掌握动力系统多传感器 创新产品设计的技巧; 3. 掌握产品开发的流程。	1. 能设计一个基于动力系统 传感器的创新作品方案; 2. 能基于设计的应用方案完成创新作品的制作; 3. 能设计制作出一个外观与 实用性兼备的多传感器综合 创新作品。
	思政元素	知识点	技能点
学习内容	专注一事, 创新意识	创新设计的基本原则、产 品设计的技巧、开发流程	设计创新作品方案、制作智 能传感器创新作品
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送动力系统传感器应用与创新的资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在汽车科创工坊开展教学,在创新教学情境中迁移学生专业技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。		

(七) 任务 2.1 车轮压力传感器装调

学习载体	压力传感器		
	素质目标知识目标	能力目标	
学习目标	1. 培养学生具有工程 实践操作的安全意识; 2. 培养学生传感器测 试与装调的规范操作 3. 培养学生使用传感 器调试软件的数字素 养。	1. 掌握车轮压力传感器系统的结构、组成以及参数测量和标定方法; 2. 掌握冷却液温度传感器系统的检测方法。	1. 能收集车轮压力传感器的 技术资料,规范拆装; 2. 能正确检测传感器判断传 感器技术状况; 3. 能设计装调流程,装调传 感器并排查系统故障。

	思政元素	知识点	技能点
学习内容	安全意识、规范操作	结构、组成以及参数测量 和标定方法、检测方法	规范拆装车轮压力传感器、 判断技术状况、装调★
教学建议	发布仿真练习任务,组 2. 建议本次任务在传感 3. 采用数据画像的过程 来开展学习评价。	织学生观看思政案例和创新 器检测实训室开展教学,训	练学生专业核心技能; 平价相结合的智能综合考核方式

(八) 任务 2.2 转向角度传感器装调

学习载体	角度传感器		
	素质目标	知识目标	能力目标
学习目标	1. 培养学生崇尚劳动、 热爱劳动的工作作感 2. 培养学生具有传感 器检测的责任担当意识; 3. 培养学生使用传感 器调试软件的数字素 养。	1. 掌握转向角度传感器的 结构、组成以及参数测量 和标定方法; 2. 掌握转向角度传感器的 检测方法。	1. 能收集转向角度传感器的技术资料,规范拆装; 2. 能正确检测传感器判断传感器技术状况; 3. 能设计装调流程,装调传感器并排查系统故障。
	思政元素	知识点	技能点
学习内容	躬身实干、耐心装调	结构、组成以及参数测量 和标定方法、检测方法	规范拆装转向角度传感器、 判断技术状况、装调●
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送转向角度传感器装调的学习资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在传感器检测实训室开展教学,训练学生专业核心技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接"智能网联汽车技术竞赛"规程。●		

(九) 任务 2.3 制动踏板位置传感器装调

学习载体	位置传感器			
	素质目标	知识目标	能力目标	
	1. 培养学生新知识的学习热情和好奇心; 2. 培养学生具有传感器装调方案编制的系统思	器的结构、组成以及参数	1. 能收集制动踏板位置传感器的技术资料,规范拆装; 2. 能正确检测传感器判断传感器技术状况;	

	维; 3. 培养学生使用传感器 调试软件的数字素养。	器的检测方法。	3. 能设计装调流程,装调传 感器并排查系统故障。
	思政元素	知识点	技能点
学习内容	精研本职、争先创优	结构、组成以及参数测量 和标定方法、检测方法	规范拆装制动踏板位置传感 器、判断技术状况、装调★
教学建议	发布仿真练习任务,组 2. 建议本次任务在传感 3. 采用数据画像的过程 来开展学习评价。	织学生观看思政案例和创新 器检测实训室开展教学,训: 性考核、终结性考核和增值i	

(十) 任务 2.4 车身高度传感器装调

学习载体	高度传感器			
	素质目标	知识目标	能力目标	
学习目标	1. 培养学生精研本职、 乐业敬业的工作态度; 2. 培养学生排查传感器 系统故障的科学思维; 3. 培养学生使用传感器 调试软件的数字素养。	1. 掌握车身高度传感器的结构、组成以及参数测量和标定方法; 2. 掌握车身高度传感器的检测方法。	1. 能收集车身高度传感器的 技术资料,规范拆装; 2. 能正确检测传感器判断传 感器技术状况; 3. 能设计装调流程,装调传 感器并排查系统故障。	
	思政元素	知识点	技能点	
学习内容	坚定信心、细致规范	结构、组成以及参数测量 和标定方法、检测方法	规范拆装车身高度传感器、 判断技术状况、装调★	
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送车身高度传感器装调的学习资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在传感器检测实训室开展教学,训练学生专业核心技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接"智能网联汽车测试装调职业技能等级证书(中级)"1+X 职业技能证书标准★			

(十一) 任务 2.5 底盘系统多传感器联调

学习载体	传感器等		
学 2 日 左	素质目标	知识目标	能力目标
学习目标	1. 培养学生具有团队意	1. 掌握底盘系统多传感器	1. 能收集底盘系统多传感器

	识和协作精神; 2. 培养学生多传感器联调结果分析的质量意识; 3. 培养学生使用多传感器联合调试软件的数字素养。	联调的流程; 2. 掌握底盘系统多传感器 联调的检测方法。	联调的技术资料; 2. 能正确检测传感器判断传感器技术状况; 3. 能设计联调流程, 联调动力系统并排查系统故障。
	思政元素	知识点	技能点
学习内容	深入钻研、执着求精	多传感器联调的流程、联 调的检测方法●	设计联调流程,联调底盘系 统、排查系统故障★
	布仿真练习任务,组织。 2.建议本次任务在中车。 车真岗真任务,训练学。 3.采用数据画像的过程。 来开展学习评价。	学生观看思政案例和创新作品 电动校园工厂车间开展教学, 生专业核心技能和岗位能力; 性考核、终结性考核和增值证 则试装调职业技能等级证书	联合调试任务到实车上体验真

(十二) 任务 2.6 底盘系统传感器应用与创新

学习载体	传感器等			
	素质目标	知识目标	能力目标	
学习目标	1. 培养学生具有勇于创新的创新思维; 2. 培养学生多传感器联合应用与创新的创新意识; 3. 培养学生使用 AI 大语言模型的数字素养。	1. 掌握底盘系统多传感器 创新设计的基本原则; 2. 掌握动力系统多传感器 创新产品设计的技巧; 3. 掌握产品开发的流程。	1. 能设计一个基于底盘系统 传感器的创新作品方案; 2. 能基于设计的应用方案完成创新作品的制作; 3. 能设计制作出一个外观与 实用性兼备的多传感器综合 创新作品。	
	思政元素	知识点	技能点	
学习内容	敢为人先,超越自我	创新设计的基本原则、产 品设计的技巧、开发流程	设计创新作品方案、制作智 能传感器创新作品★	
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送底盘系统感器应用与创新的资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在汽车科创工坊开展教学,在创新教学情境中迁移学生专业技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。			

(十三) 任务 3.1 超声波雷达系统测试与装调

学习载体	超声波雷达			
	素质目标	知识目标	能力目标	
学习目标	1. 培养学生具有超声波雷达 工程实践操作的安全意识和 规范操作意识; 2. 培养学生主动学习、发现 问题、分析问题和解决问 的工程思维能力; 3. 培养学生使用超声波雷达 的 CANtest 调试软件的数字 素养。	1. 掌握超声波雷达的结构、特点及应用; 2. 掌握超声波雷达的主要参数; 3. 掌握超声波雷达脉冲回波检测法测距原理。	1. 能完成超声波雷达的本体 安装与线束连接; 2. 能配置超声波雷达控制器 及 CAN 总线分析仪的终端电阻; 3. 能设计超声波雷达装调方 案。	
	思政元素	知识点	技能点	
学习内容	安全意识、规范操作	超声波雷达的结构 特点及应用、参数、 测距原理	规范安装超声波雷达、配置 CAN 分析仪、设计装调方案 ●★	
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送超声波雷达系统装调的学习资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在汽车智能传感器实训室开展教学,训练学生专业核心技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接"智能网联汽车测试装调职业技能等级证书(中级)"1+X 职业技能证书标准★ 5. 对接"智能网联汽车技术竞赛"规程。●			

(十四) 任务 3.2 毫米波雷达系统测试与装调

学习载体	毫米波雷达			
	素质目标	知识目标	能力目标	
学习目标	1. 培养学生认知细致、严谨细心的品质;培养学生具有传感器系统检测的责任担当意识; 2. 培养学生使用 ARS_408调试软件数字素养。	1. 掌握毫米波的概念与特点; 2. 掌握毫米波雷达的结构与常见分类; 3. 掌握毫米波雷达 测速、测距测角原理。	1. 能完成毫米波雷达的本体 安装与线束连接;在 ARS_408 软件中正确完成毫米波雷达 的参数配置; 2. 能设计超声波雷达装调方 案。	
	思政元素	知识点	技能点	
学习内容	躬身实干、耐心装调	毫米波雷达结构特 点测速测距测角原 理	规范安装毫米波雷达、ARS_408 参数配置、设计装调方案★●	

- 1. 采用 STEM 的 6E 教学流程开展教学,课前推送毫米波雷达系统装调的学习资源, 发布仿真练习任务,组织学生观看思政案例和创新作品案例;
- 2. 建议本次任务在汽车智能传感器实训室开展教学,训练学生专业核心技能;
- 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。
- 对接"智能网联汽车测试装调职业技能等级证书(中级)"1+X 职业技能证书标准★
- 5. 对接"智能网联汽车技术竞赛"规程。●
- 6. 对接专业技能抽考题库▲

教学建议

(十五) 任务 3.3 激光雷达系统测试与装调

学习载体	激光雷达		
	素质目标	知识目标	能力目标
学习目标	1. 培养学生一丝不苟、耐心踏实的做事态度; 2. 培养学生具有激光雷达系统装调方案编制系统思维; 3. 培养学生使用 LSC16 调试软件的数字素养。	1. 掌握激光雷达的特点与基本结构; 2. 掌握激光雷达的主要性能指标; 3. 掌握激光雷达干涉测距法原理。	1. 能完成激光雷达的本体安装与线束连接; 2. 能配置激光雷达网络; 3. 能解析激光雷达点云数据。
	思政元素	知识点	技能点
学习内容	精研本职、争先创优	激光波雷达结构特点测速测距测角原理	规范安装激光雷达、 LSC16 参数配置、解析点 云数据★▲●
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送激光雷达系统装调的学习资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在汽车智能传感器实训室开展教学,训练学生专业核心技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接智能网联汽车技术竞赛规程● 5. 对接"1+X"证书"智能网联汽车测试装调技能等级证书(中级)"标准★ 6. 对接专业技能抽考标准▲		

(十六) 任务 3.4 视觉传感器系统测试与装调

学习载体	视觉传感器		
学习目标	素质目标	知识目标	能力目标

	1. 培养学生发现问题、解决问题、自主学习的科学探索精神;培养学生排查传感器系统故障的科学思维。 2. 培养学生使用视觉传感器 Fieldhelper 调试软件的数字素养。	1. 掌握视觉传感器的 特点与组成。 2. 掌握视觉传感器的 主要参数及典型应 用。 3. 掌握视觉传感器图 像识别原理。	1. 能完成视觉传感器的安装与线束连接。 2. 能使用水平测量仪校准视觉传感器。 3. 能在 Fieldhelper 软件中标定视觉传感器。
学习内容	思政元素 坚定信心、细致规范	知识点 视觉传感器结构特 点、参数和图像识别 原理	技能点 校准视觉传感器水平、标定视觉传感器★▲●
教学建议	发布仿真练习任务,组织等 2.建议本次任务在汽车智能 3.采用数据画像的过程性等 式来开展学习评价。 4.对接智能网联汽车技术等	学生观看思政案例和创新 能传感器实训室开展教学 考核、终结性考核和增值 竞赛规程● 网联汽车测试装调技能	觉传感器系统装调的学习资源, f作品案例; r,训练学生专业核心技能; [评价相结合的智能综合考核方 等级证书(中级)"标准★

(十七) 任务 3.5 环境感知系统多传感器联调

学习载体	传感器等			
	素质目标	知识目标	能力目标	
学习目标	1. 培养学生刻苦钻研、不怕 困难的品质; 2. 培养学生具有多传感器联 调团队意识和质量意识; 3. 培养学生使用多传感器联 合调试软件的数字素养。	1. 掌握多传感器联调的体系结构; 2. 掌握多传感器联调的特点和典型应用; 3. 掌握多传感器数据融合原理。	1. 能播放传感器数据包、查看传感器融合标定结果; 2. 能检查系统离线数据包; 3. 能完成多传感器联调道路测试。	
	思政元素	知识点	技能点	
学习内容	匠心品质、精益求精	多传感器联调的体系 结构、数据融合原理	查看传感器融合标定结果、 多传感器联调道路测试★	
教学建议	源,发布仿真练习任务,组 2. 建议本次任务在中车电动 真车真岗真任务,训练学生	织学生观看思政案例和1 校园工厂车间开展教学, 专业核心技能和岗位能;	联合调试任务到实车上体验	

式来开展学习评价。

- 4. 对接智能网联汽车技术竞赛规程●
- 5. 对接"1+X"证书"智能网联汽车测试装调技能等级证书(中级)"标准★

(十八) 任务 3.6 智能传感器应用与创新

学习载体	智能传感器等				
	素质目标	知识目标	能力目标		
学习目标	1. 培养学生具有勇于创新的创新思维; 2. 培养学生多传感器联合应用与创新的创新意识; 3. 培养学生使用 AI 大语言模型的数字素养。	1. 掌握智能传感器创新设计的基本原则; 2. 掌握产品设计的技巧; 3. 掌握产品开发的流程。	1. 能设计一个基于汽车智能 传感器的创新作品方案; 2. 能基于设计的应用方案完成创新作品的制作; 3. 能设计制作出一个外观与 实用性兼备的智能传感器创 新作品。		
学习内容	思政元素	知识点	技能点		
	独具创心、用于创新	创新设计的基本原则、 产品设计的技巧、开发 流程	设计创新作品方案、制作智 能传感器创新作品●		
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送智能传感器应用与创新的资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在汽车科创工坊开展教学,在创新教学情境中迁移学生专业技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接嵌入式技术应用开发赛项规程●				

(十九) 任务 4.1 无人物流车传感器整车集成

学习载体	智能传感器等				
学习目标	素质目标	知识目标	能力目标		
	1. 培养学生精研本职、乐业敬业的工作态度; 2. 培养学生传感器整车集成的系统思维; 3. 培养学生使用通用软件的数字素养。	1. 掌握无人物流车传感 器整车集成的流程; 2. 掌握无人物流车传感 器的检测方法。	1. 能收集无人物流车传感器整车集成的技术资料; 2. 能设计传感器整车集成步骤流程; 3. 能规范集成无人物流车传感器,排查系统故障。		
学习内容	思政元素	知识点	技能点		
	坚定信念、规范集成	传感器整车集成的流 程、物流车传感器的检	整车集成步骤流程、集成无 人物流车传感器★		

	测方法
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送无人物流车传感器整车集成的学习资源,仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在中车电动校园工厂车间开展教学,训练学生专业核心技能; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接"1+X"证书"智能网联汽车测试装调技能等级证书(中级)"标准★

(二十) 任务 4.2 无人物流车传感器综合调试

学习载体	智能传感器等				
	素质目标 知识目标		能力目标		
学习目标	1. 培养学生具有团队意识和协作精神; 2. 培养学生感器综合调试结果分析的质量意识; 3. 培养学生使用感器综合调试的试验	1. 掌握无人物流车传感器综合调试的流程; 2. 掌握无人物流车传感器综合调试的检测方法。	1. 能收集无人物流车传感器综合调试的技术资料; 2. 能设计无人物流车传感器综合调试流程; 3. 能规范无人物流车传感器综合调试流程;		
	思政元素	知识点	技能点		
学习内容	勤勉敬业、创效增益	无人物流车传感器综合调试的流程、检测 方法●	设计综合调试流程,规范综 合调试、排查系统故障●		
教学建议	1. 采用 STEM 的 6E 教学流程开展教学,课前推送无人物流车传感器综合调试的资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在中车电动校园工厂车间开展教学,联合调试任务到实车上体验真车真岗真任务,训练学生专业核心技能和岗位能力; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接智能网联汽车技术竞赛规程●				

注: 其中带★标记是对接智能网联汽车测试装调职业技能等级证书(中级) 1+X 职业技能考证知识点、技能点; 带●是融入智能网联汽车技术技能大赛、嵌入式技术应用开发赛项的知识点、技能点; 带▲是对接专业技能抽考标准。

七、课程考核与评价

本课程贯彻落实《深化新时代教育评价改革总体方案》的相关要求,深化学生评价改革,坚持以德为先、能力为重、全面发展,探索多元化的课程评价体系。借助学校"三可视一精准"大数据分析平台,融合超星学习通教学平台、仿真实训平台和实训管理平台等学习行为数据,进行学生"数字画像",可视化"智评

价"报告,开展"过程评价+结果评价+增值评价"的 STEM 评价,促进学生专业技能与创新能力的核心素养全面提升。

具体的评价主体、评价内容和权重如图1所示:

图 1 考核评价内容

八、课程教学要求

(一) 教师

- 1. 系统掌握各传感器工作原理、结构以及系统电路原理;
- 2. 具有较强的教学组织能力:
- 3. 具有一定的信息化运用能力和课程资源开发能力;
- 4. 具有较强的传感器检测和标定的实践操作能力;
- 5. 具有较强传感器开发设计能力:
- 6. 具有较强创新精神与创造力。

(二) 教材

- 1. 教材选用遵循如下原则:
- (1) 实用性和实践性。教材内容以"必需、够用"为原则,实践部分以易于联系实践,技能操作符合职业技能规范。
- (2) 基础性。教材的深度和广度要符合高等职业教育的水平,即包涵职业岗位必需的理论知识,还注重学生继续学习能力的培养。采取项目形式编写,根

据就业趋势,加强职业能力培养。

- (3)综合性。教材内容要广泛,适用面广。内容要包括职业要求的理论知识和职业能力训练,还应包括非技术的职业素养培养。通过案例训练,着重培养学生对职业良好的责任感。
- (4) 形式多样性。教材内容组织形式要多样性,内容要灵活。要反应了科学技术的发展,有新技术、新工艺、新方法和新理论。课后训练设计到位,并引导学生进行广泛讨论。

2. 推荐教材

表 2 推荐教材表

(三) 教法

- 1. 示范教学法: 教师操作示范, 学生模仿训练, 掌握专业核心技能。
- 2. 案例教学法: 以企业典型工作案例引入教学, 创设真实情境, 培养职业素 养和岗位认同感。
- 3. 合作探究法: 教师提问, 引导学生自主学习工作任务的相关知识点并进行合作探究, 不断提升分析和解决问题的能力。
- 4. 实践训练法:老师示范操作,利用实验设备,实训平台,实车平台,学生按照汽车传感器装配、调试工作任务流程进行实践训练,掌握专业核心技能。

(四)资源

- 1. 注重颗粒化教学资源的开发和利用,激发学生的学习兴趣,促进学生对知识的理解、掌握和应用。
 - 2. 充分利用学习通教学平台开展教学,同时利用维修手册、电子书籍、电子

期刊、数字图书馆和电子论坛等信息资源,支撑教学活动从信息的单向传递向双向交换转变、学生由个体学习向合作学习转变。

- 3. 校企合作共同开发典型案例,并充分利用与中车建立的现场工程师合作协议,建立实习实训基地,实践"工学"交替,满足学生的实习实训,使学生在见习、实习过程中能够获得职业体验,同时为学生的就业创造机会。
- 4. 建立本专业开放实训中心,使之具备现场教学、实验实训、职业技能证书 考证功能,实现教学与实训合一、教学与培训合一、教学与考证合一,满足学生 综合职业能力培养的要求。
 - 5. 已有课程数字资源如下:
 - ①《传感器应用与信号检测》数字教材;
 - ②汽车传感器虚拟仿真软件;

国家专业教学资源库: https://qczn.jszy.mh.chaoxing.com/;

省精品在线开放课程: https://www.xueyinonline.com/detail/244838133。

(五)条件

表 3 实训室设备配置要求

	W O V WIEWER BLEXY						
序号	实训室名称	主要工具与设备名称	班均台 套数	实训课程	实训项目		
	传感器检测实训室	高配置计算机	50		1. 冷却液温度传感器		
		专用配套软件	50	4 + m -	2. 驱动电机转速、扭矩、位置		
1		传感器实验平台	25	传感器应 用与信号	传感器 3. 车轮压力传感器		
		示波器	25	检测	4. 转向角度传感器		
		万用表	50		5.制动踏板位置传感器6.车身高度传感器		
	汽车智能传感器实训室	智能传感器台架	6		1. 超声波雷达测试与装调		
2		智能网联教学车	6	传感器应 用与信号	 毫米波雷达测试与装调 激光雷达测试与装调 		
2		智能传感调试软件 (CANTest、SC16)	50	检测	4. 视觉传感器测试与装调5. 车载惯性导航系统装调6. 车载卫星导航定位系统装调		
	中车电动校 园工厂车间	中车电动框架实验汽车	1台		1 化成果氏量从测		
		中车电动大巴	1台	传感器应	1. 传感器质量检测 2. 传感器系统的布线安装		
3		实验工具、电池	20	用与信号	3. 智能传感器系统的调试		
		防护用品	50	检测	4. 智能传感器系统的联调		
		传感器套件	50		5. 传感器系统的故障排查		

九、教学进程与安排

表 4 教学进程

任课学年与学期			20XX-20XX 学年第三学期		
课程总学时数			56		
	本学期教学周数		14		
于於和於叶八郎	本课程周学时数		4		
本学期学时分配	14.1.	理论教学	28		
	其中 实践教学		28		

表 5 课程安排

序号	项目	任务	总学时	理论 学时	实践 学时
		任务 1: 冷却液温度传感器装调	2	1	1
		任务 2: 驱动电机转速传感器装调	2	1	1
1	动力系统传感器装	任务 3: 驱动电机扭矩传感器装调	2	1	1
	调及应用	任务 4: 驱动电机位置传感器装调	2	1	1
		任务 5: 动力系统多传感器联调	4	2	2
		任务 6: 动力系统感器应用与创新	4	2	2
	底盘系统传感器装 调及应用	任务 1: 车轮压力传感器装调	2	1	1
		任务 2: 转向角度传感器装调	2	1	1
9		任务 3: 制动踏板位置传感器装调	2	1	1
2		任务 4: 车身高度传感器装调	2	1	1
		任务 5: 底盘系统多传感器联调	4	2	2
		任务 6: 底盘系统传感器应用与创新	4	2	2
	环境感知系统传感 器装调与应用	任务 1: 超声波雷达系统测试与装调	2	1	1
3		任务 2: 毫米波雷达系统测试与装调	2	1	1
		任务 3: 激光雷达系统测试与装调	2	1	1
		任务 4: 视觉传感器系统测试与装调	2	1	1
		任务 5: 环境感知系统多传感器联调	4	2	2
		任务 6: 智能传感器应用与创新	4	2	2

4	中车无人物流	任务1:无人物流车传感器整车集成	4	2	2
4	车综合调试	任务 2: 无人物流车传感器综合调试	4	2	2
	总计			28	28