4.5 "网络通信系统测试与应用"课程标准

一、课程基本信息

课程名称: 网络通信系统测试与应用

课程代码: 11010138

开课部门:车辆工程学院

适用专业:智能网联汽车技术

课程学时: 64

课程学分: 4

开设学期:第4学期

二、课程性质与任务

(一) 课程性质

"网络通信系统测试与应用"是智能网联汽车技术专业的专业核心课程, 也适用于智能交通技术、物联网应用技术、汽车智能技术专业。以"岗课赛证融 通"为导向构建项目化任务式内容。该课程对接专业技能抽考标准,融入智能网 联汽车技术大赛要求,将国家标准、职业规范、通信原理、系统搭建、系统测试 等知识与技能相融合。该课程是针对自动驾驶通信系统测试等岗位的典型工作任 务,归纳总结出本专业岗位所需的通信技术基础知识、车内外通信系统装调测试 等能力要求而设置的课程。

(二) 课程任务

本课程培养具有较高素养的技术人员,通过本课程的学习让学生熟知通信技术的基础原理、掌握短距离和长距离无线通信技术、掌握车内总线技术,能根据要求进行通信模块与系统的测试,使学生具备一定的原理分析与技术应用能力。

三、课程理念与思路

(一) 课程教学理念

采用线上+线下的教学组织模式,线上课程由学生利用课后时间自主学习完成,线上课程依托超星泛雅学习通教学资源库平台,线上配套有微课视频、仿真动画、习题库、教学课件等数字资源.线下课程采取面授的方式在一体化实训室完成,通过任务驱动、项目演示、技术原理探究的方式开展教学,线下课程主要

以学生实践操作为主。

(二) 课程教学思路

本课程基于国家教学资源库平台,实施线上线下混合式教学模式。根据《国家职业教育改革实施方案》(职教 20 条)中提出的适应"互联网+职业教育"发展需求,运用现代信息技术改进教学方式方法,本课程将基于超星平台,实施"线上+线下"的 5E 教学模式。在教学设计过程中,立足于教材的理论知识,结合实际拓展应用知识,以任务驱动、讨论法、练习法等为主要教学方法。

四、课程教学目标

(一) 总体目标

培养学生专业技能的同时,也培养强烈的爱国情怀、自主创新、安全意识,以及团队协作能力、沟通能力,从而达到培养学生的专业能力与职业素养的目的。

(二) 具体目标

1. 知识目标

- (1) 掌握通信基础知识。
- (2) 掌握网络通信实训系统。
- (3) 掌握 CAN/LIN 总线基础知识。
- (4) 掌握 CAN/LIN 模块及接口。
- (5) 掌握无线通信基础知识。
- (6) 掌握 WiFi、蓝牙、Zigbee 技术基础知识。
- (7) 掌握 WiFi、蓝牙、Zigbee 通信模块及接口。
- (8) 掌握移动通信基础知识。
- (9) 掌握 LoRa/NB-IoT 通信、4G/5G 技术基础知识。
- (10) 掌握 LoRa/NB-IoT 通信模块、移动通信模块及接口。
- (11) 掌握车内 CAN 线、车内局域网、车载与路侧通信网络拓扑结构;
- (12) 掌握车内 CAN 线、车内局域网、车载与路侧通信网络通信接口:
- (13) 掌握车联网 DSRC\LTE-V 通信技术基础知识。
- (14) 掌握车联网 DSRC\LTE-V 通信系统组成。
- (15) 掌握车联网 DSRC\LTE-V 通信协议架构。

2. 能力目标

- (1) 能绘制一般通信系统框架图:
- (2) 能搭建基础通信系统并测试功能;
- (3) 能绘制 CAN/LIN 通信系统框架图;
- (4) 能搭建 CAN/LIN 通信系统并测试功能:
- (5) 能记录测试过程及数据。
- (6) 能绘制无线通信系统框架图;
- (7) 能对 WiFi、蓝牙、Zigbee 通信模块进行参数配置;
- (8) 能绘制 WiFi、蓝牙、Zigbee 通信系统框架图;
- (9) 能搭建 WiFi、蓝牙、Zigbee 通信系统并测试功能;
- (10) 能记录测试过程及数据。
- (11) 能绘制 DSRC\LTE-V 通信系统框架图:
- (12) 能绘制 DSRC\LTE-V 通信协议架构图;
- (12) 能绘制移动通信系统框架图:
- (14) 能绘制 LoRa/NB-IoT 通信系统框架图;
- (15) 能搭建 LoRa/NB-IoT 通信系统并测试功能;
- (16) 能记录测试过程及数据。
- (17) 能绘制智能小车通信网络拓扑图:
- (18) 能搭建智能小车的通信系统并测试功能:
- (19) 能记录测试过程及数据。

3. 素质目标

- (1) 正确的世界观、人生观、价值观;
- (2) 良好的职业道德和职业素养;
- (3) 良好的沟通能力及团队协作精神;
- (4) 具备一定的数字化素养。

五、课程结构与学时

本课程共设计了4个模块、11个学习任务。课程内容包括模块1总线通信系统测试、模块2无线局域网通信系统测试、模块3无线广域网通信系统测试、模块4自动驾驶通信系统测试,共计64课时。

表1 课程结构与学时分配表

序号	学习模块	学习任务	参考学时
1	N IN IZ A TA HIN	任务1-1.CAN总线通信系统测试	4
	总线通信系统测试	任务1-2.LIN总线通信系统测试	4
	2 无线局域网通信系统测试	任务2-1.WiFi通信系统测试▲	8
2		任务2-2.蓝牙通信系统测试	8
		任务2-3.ZigBee通信系统测试	8
	无线广域网通信系统测试	任务3-1.LoRa通信系统测试▲	8
3		任务3-2.NB-IoT通信系统测试	8
		任务3-3.移动通信系统测试	4
		任务4-1.车内CAN总线通信系统测试	4
4	自动驾驶通信系统测试	任务4-2.车内局域网通信系统测试	4
		任务4-3.车载与路侧通信系统测试	4
总计			64

注: 带▲是对接专业技能抽考标准。

六、学习内容与安排

(一) 任务 1-1. CAN 总线通信系统测试

学习载体	CAN/总线通信模块			
	知识目标	能力目标	素质目标	
学习目标	1. 掌握通信基础知识。 2. 掌握网络通信实训系 统。 3. 掌握CAN总线基础知识。 4. 掌握CAN模块及接口。	1. 能绘制一般通信系统框架图; 2. 能搭建基础通信系统并测试功能; 3. 能绘制CAN通信系统框架图; 4. 能搭建CAN通信系统并测试功能; 5. 能记录测试过程及数据。	1. 培养学生自主 创新意识; 2. 培养严肃细致 的工作态度; 3. 培养民族自信、 自豪感的家国情	
	知识点	技能点	思政元素	
学习内容	1. 通信基础知识、网络通信实训系统 2. CAN总线基础知识、CAN 模块及接口	1. 绘制一般通信系统框架图、搭建基础通信系统并测试功能、2. 绘制CAN/LIN通信系统框架图3. 搭建CAN/LIN通信系统并测试功能、记录测试过程及数据。		
教学建议		学,课前推送网络通信系统测试与 ,组织学生观看思政案例和创新作		

2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核 方式来开展学习评价。

(二) 任务 1-2. LIN 总线通信系统测试

学习载体	LIN总线通信模块			
	知识目标	能力目标	素质目标	
学习目标	1. 掌握LIN总线基础知识。 2. 掌握LIN模块及接口。	1. 能绘制LIN通信系统框架图; 2. 能搭建LIN通信系统并测试功能;	1. 培养学生自主创新 意识; 2. 培养严肃细致的工 作态度; 3. 培养民族自信、自 豪感的家国情怀	
	知识点	技能点	思政元素	
学习内容		1. 绘制LIN通信系统框架图	民族自豪、爱国情怀、	
子勺內谷	1. LIN总线基础知识 2. LIN模块及接口	2. 搭建LIN通信系统并测试功能、	团队合作、严谨细致规范	
子々以谷	2. LIN模块及接口 1. 采用5E教学流程开展	2. 搭建LIN通信系统并测试功能、 记录测试过程及数据。 教学,课前推送网络通信系统测试	团队合作、严谨细致 规范 与应用分析方法相关	
教学建议	2. LIN模块及接口 1. 采用5E教学流程开展资源,发布仿真练习任 2. 建议本次任务在网络	2. 搭建LIN通信系统并测试功能、 记录测试过程及数据。	团队合作、严谨细致 规范 与应用分析方法相关 行作品案例; 该心技能和岗位能力;	

(三) 任务 2-1. WiFi 通信系统测试

学习载体	WiFi通信模块		
	知识目标	能力目标	素质目标
学习目标	1. 掌握无线通信基础知识。 2. 掌握WiFi技术基础知识。 3. 掌握WiFi通信模块及 接口。	1. 能绘制无线通信系统框架图; 2. 能对WiFi通信模块进行参数配置; 3. 能绘制WiFi通信系统框架图; 4. 能搭建WiFi通信系统并测试功能; 5. 能记录测试过程及数据。	1. 培养学生自主 创新意识; 2. 培养严肃细致 的工作养民族的 3. 培养民族的 信、自 情怀
	知识点	技能点	思政元素
学习内容	1. 无线通信基础知识 2. WiFi技术基础知识 3. WiFi通信模块及接口	1. 绘制无线通信系统框架图、配置WiFi通信模块参数、绘制WiFi通信系统框架图; ▲ 2. 搭建WiFi通信系统并测试功能、记录测试过程及数据。	民族自豪、爱国情怀、团队合作、严谨细致规范、创新意识
教学建议	资源,发布仿真练习任务 2.建议本次任务在网络通	之。 一、课前推送网络通信系统测试与原 一、组织学生观看思政案例和创新作 位言实训室开展教学,训练专业核心 一考核、终结性考核和增值评价相结合	品案例; 技能和岗位能力;

方式来开展学习评价。

4. 对接专业技能抽考标准▲

(四) 任务 2-2. 蓝牙通信系统测试

学习载体	蓝牙通信模块		
	知识目标	能力目标	素质目标
	1. 掌握无线通信基础知识。	1. 能绘制无线通信系统框架图; 2. 能对蓝牙通信模块进行参数配	1. 培养学生自主创新意识;
学习目标	2. 掌握蓝牙技术基础知识。	置; 3. 能绘制蓝牙通信系统框架图; 4. 能搭建蓝牙通信系统并测试功	 2. 培养严肃细致 的工作态度; 3. 培养民族自
	3. 掌握蓝牙通信模块及接口。	4. 配拾建监才通信系统开测试功能; 5. 能记录测试过程及数据。	5. 培乔氏族自信、自豪感的家国情怀
	知识点	技能点	思政元素
学习内容	1. 蓝牙技术基础知识; 2. 蓝牙通信模块及接口	1. 绘制无线通信系统框架图、配置蓝牙通信模块参数、绘制蓝牙通信系统框架图; ▲ 2. 搭建蓝牙通信系统并测试功能、记录测试过程及数据。	民族自豪、爱国 情怀、团队合作、 严谨细致规范、 创新意识
教学建议	1. 采用5E教学流程开展教学,课前推送网络通信系统测试与应用分析方法相关资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接专业技能抽考标准▲		

(五) 任务 2-3. Zigbee 通信系统测试

学习载体	Zigbee通信模块			
	知识目标	能力目标	素质目标	
学习目标	1. 掌握无线通信基础知识。 2. 掌握Zigbee技术基础知识。 3. 掌握Zigbee通信模块及接口。	1. 能绘制无线通信系统框架图; 2. 能对Zigbee通信模块进行参数 配置; 3. 能绘制Zigbee通信系统框架 图; 4. 能搭建Zigbee通信系统并测试 功能; 5. 能记录测试过程及数据。	1. 培养学生自主 创新意识; 2. 培养严肃细致 的工作态度; 3. 培养民族自 信、自 情怀	
	知识点	技能点	思政元素	
学习内容	1. 无线通信基础知识 2. Zigbee技术基础知识; 3. Zigbee通信模块及接口	1. 绘制无线通信系统框架图、配置Zigbee通信模块参数、绘制Zigbee通信系统框架图; ▲2. 搭建Zigbee通信系统并测试功能、记录测试过程及数据。	民族自豪、爱国 情怀、团队合作、 严谨细致规范、 创新意识	

教学建议

- 1. 采用5E教学流程开展教学,课前推送网络通信系统测试与应用分析方法相关资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例;
- 2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力;
- 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。
- 4. 对接专业技能抽考标准▲

(六) 任务 3-1. LoRa 通信系统测试

学习载体	LoRa通信模块			
	知识目标	能力目标	素质目标	
学习目标	1. 掌握LoRa通信技术基础知识。 2. 掌握LoRa通信模块及接口。	1. 能绘制移动通信系统框架图; 2. 能绘制LoRa通信系统框架图; 3. 能搭建LoRa通信系统并测试功能; 4. 能记录测试过程及数据。	1. 培养学生自主创新意识; 2. 培养严肃细致的工作态度; 3. 培养民族的信、自信、自情怀	
	知识点	技能点	思政元素	
学习内容	1. LoRa通信技术基础知识 2. LoRa通信模块及接口	1. 绘制LoRa通信系统框架图 2. 搭建LoRa通信系统▲ 3. 完成通信系统并测试功能、记录测试过程及数据。	民族自豪、爱国情怀、团队合作、严谨细致规范	
教学建议	1. 采用5E教学流程开展教学,课前推送网络通信系统测试与应用分析方法相关资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接专业技能抽考标准▲			

(七) 任务 3-2. NB-IoT 通信系统测试

学习载体	NB-IoT通信模块			
	知识目标	能力目标	素质目标	
学习目标	1. 掌握NB-IoT通信基础知识。 2. 掌握LoRa通信模块及接口。	1. 能绘制NB-IoT通信系统框架 图; 2. 能搭建NB-IoT通信系统并测试 功能; 3. 能记录测试过程及数据。	1. 培养学生自主创新意识; 2. 培养严肃细致的工作态度; 3. 培养民族自信、自豪的官、自情怀	
	知识点	技能点	思政元素	
学习内容	1. NB-IoT通信基础知识 2. NB-IoT通信模块及接 口	1. 绘制NB-IoT通信系统框架图 2. 搭建NB-IoT通信系统▲ 3. 完成通信系统并测试功能、记录测试过程及数据。	民族自豪、爱国情怀、团队合作、严谨细致规范	

教学建议

- 1. 采用5E教学流程开展教学,课前推送网络通信系统测试与应用分析方法相关资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例;
- 2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力;
- 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。
- 4. 对接专业技能抽考标准▲

(八) 任务 3-3. 移动通信系统测试

学习载体	移动通信模块			
	知识目标	能力目标	素质目标	
学习目标	1. 掌握移动通信基础知识。 2. 掌握移动通信模块及 接口。	1. 能绘制移动通信系统框架图; 2. 能搭建移动通信系统并测试功能; 3. 能记录测试过程及数据。	1. 培养学生自主 创新意严肃细致 2. 培养态度; 3. 培养民族的 信、自 信、自 情怀	
	知识点	技能点	思政元素	
学习内容	1. 移动通信基础知识 2. 4G/5G技术基础知识 3. 4G通信模块及接口	1. 绘制移动通信系统框架图 2. 绘制4G/5G通信系统框架图 3. 4G通信系统并测试功能、记录 测试过程及数据。	民族自豪、爱国情怀、团队合作、严谨细致规范	
	1. 采用5E教学流程开展教学,课前推送网络通信系统测试与应用分析方法相关资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例;			
教学建议	2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力;3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。4. 对接专业技能抽考标准▲			

(九) 任务 4-1. 车内 CAN 总线通信系统测试

学习载体	智能小车			
	知识目标	能力目标	素质目标	
学习目标	1. 掌握通信网络通信基础知识; 2. 掌握车内CAN线通信网络拓扑结构; 2. 掌握车内CAN线通信网络拓扑结构; 4. 掌握车内CAN线通信网络通信接口;	1. 能绘制智能小车通信网络拓扑图; 2. 能搭建智能小车的通信系统并测试功能; 3. 能记录测试过程及数据。	1. 培养学生自主创新意识; 2. 培养严肃细致的工作态度; 3. 培养民族自信、自豪感的家国情怀	
	知识点	技能点	思政元素	
学习内容	1. 小车通信网络拓扑结构; 2. 车内CAN线通信网络通信接口; ●	 1. 绘制智能小车通信网络 拓扑图; 2. 搭建智能小车的通信系 统并测试功能; 3. 记录测试过程及数据。 	民族自豪、爱国情怀、团队合作、严谨 细致规范	

1. 采用5E教学流程开展教学,课前推送网络通信系统测试与应用分析方法相关资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例;

2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力;

教学建议

- 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。
- 4. 对接专业技能抽考标准▲
- 5. 对接智能网联汽车技术竞赛规程●

(十) 任务 4-2. 车内局域网通信系统测试

学习载体	智能小车			
	知识目标	能力目标	素质目标	
	1. 掌握通信网络基础知识;	1. 能绘制智能小车通信网络 拓扑图:	1. 培养学生自主创新意识;	
学习目标	2. 掌握车内局域网通信网络拓扑结构; 3. 掌握车内局域网网络通信接口;	2. 能搭建智能小车的通信系 统并测试功能; 3. 能记录测试过程及数据。	2. 培养严肃细致的 工作态度; 3. 培养民族自信、 自豪感的家国情怀	
	知识点	技能点	思政元素	
学习内容	1. 小车通信网络拓扑结构; 2. 车内局域网网络通信接口; ●	 绘制智能小车通信网络拓扑图; 搭建智能小车的通信系统并测试功能; 记录测试过程及数据。 	民族自豪、爱国情怀、团队合作、严谨细致规范	
教学建议	1. 采用5E教学流程开展教学,课前推送网络通信系统测试与应用分析方法相关资源,发布仿真练习任务,组织学生观看思政案例和创新作品案例; 2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能力; 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合考核方式来开展学习评价。 4. 对接专业技能抽考标准▲ 5. 对接智能网联汽车技术竞赛规程●		作品案例; 心技能和岗位能力;	

(十一) 任务 4-3. 车载与路侧通信系统测试

学习载体	智能小车		
	知识目标	能力目标	素质目标
	1. 掌握车联网通信技术基	1. 能绘制智能小车通信网	1. 培养学生自主创
** 1 1 1 1	础知识;	络拓扑图;	新意识;
学习目标	2. 掌握车载与路侧通信网络拓扑结构;	2. 能搭建智能小车的通信	2. 培养严肃细致的工作态度;
		系统并测试功能;	1, 1, 1, 2, 2, 1
	3. 掌握车载与路侧通信网	3. 能记录测试过程及数据。	3. 培养民族自信、自
	络通信接口;		豪感的家国情怀
学习内容	知识点	技能点	思政元素

	1. 小车通信网络拓扑结	1. 绘制智能小车通信网络			
	构;	拓扑图;	民族自豪、爱国情		
	2. 车载与路侧通信网络通	2. 搭建智能小车的通信系	怀、团队合作、严谨		
	信接口; ●	统并测试功能; ●	细致规范		
	3. 车联网通信技术;	3. 记录测试过程及数据。			
	1. 采用5E教学流程开展教学	,课前推送网络通信系统测试	5.与应用分析方法相关		
	资源,发布仿真练习任务,	组织学生观看思政案例和创新	折作品案例;		
	2. 建议本次任务在网络通信实训室开展教学,训练专业核心技能和岗位能 教学建议 3. 采用数据画像的过程性考核、终结性考核和增值评价相结合的智能综合				
教学建议					
	方式来开展学习评价。				
	4. 对接专业技能抽考标准▲				
	5. 对接智能网联汽车技术竞	赛规程●			

注: 其中带●是融入智能网联汽车技术技能大赛的知识点、技能点。带▲是 对接专业技能抽考标准。

七、课程考核与评价

本课程考核由过程考核(包含增值性评价奖励 10%)和终结性考核两部分组成,具体比例和考核内容如表 2 所示。

表 2 考核方式与标准

考核阶段	考核内容	考核形式	成绩比例
	见表 3 模块评分标准	考勤、课堂提问、平时作业、 现场考核、作业提交(自评、 他评与师评相结合)	30%
	见表 4 平台评分标准	系统自动考核	20%
过程考核	关注学生的学习过程,聚焦学生的学习进阶情况,从项目参与度的提升(20%)、项目完成质量的提升(25%)、技能水平的提高(25%)、解决问题能力的提高(30%)等多个方面进行评价	教师通过线上智能平台利用 大数据等方法得出考核结果	10%
终结性 考核	综合技能、理论知识、职业规范、 创新能力等	综合考核	40%

过程考核项目主要是针对 4 个模块和网络资源学习,具体的评价内容、评价标准、权重如表 3.表 4 所示。

表 3 模块评分标准

目标 评价要素 评价标准	考核	→ 项目总 → 分权重
--------------	----	----------------

		NT 71 F N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	出勤	迟到、早退扣1分/次; 旷课扣2分/次;	教师评定	35	
综合素养 考核	学习态度	上课睡觉、玩手机扣1分/次;积极参与讨论、课堂提问、汇报等加2分/次;	教师、小组长	20	40%
71/2	课后作业	课后作业未完成扣5分/次	教师、小组长	30	
	6S 整理	未进行 6S 整理扣 5 分/次	教师、小组长	15	
	理论知识	在线测试题	系统平台	40	
总线通信 系统测试	设计方案	根据小组汇报情况	教师	20	15%
71.9074 # (1	技能操作	根据工单完成正确率	小组	40	
无线局域	理论知识	在线测试题	系统平台	40	
网通信系	设计方案	根据小组汇报情况	教师	20	15%
统测试	技能操作	根据工单完成正确率	小组	40	
无线广域	理论知识	在线测试题	系统平台	40	
网通信系	设计方案	根据工单完成正确率	小组长	20	15%
统测试	技能操作	根据工单完成正确率	小组	40	
自动驾驶通信系统	理论知识	在线测试题	系统平台	40	
	设计方案	根据小组汇报情况	教师	20	15%
测试	技能操作	根据工单完成正确率	小组	40	

表 4 平台评分标准

目标	评价要素	评价标准	评价依据	考核方式	权重
可从阳	在线学习	完成在线学习内容; 完成视频学习任务	系统自动完成学习记录统计与 成绩评定	系统评定	30
	在线测试	完成每次任务在线测试	系统自动完成测试成绩的评 定,生成成绩统计表	系统评定	30
学习	访问次数	访问量,讨论参与程度, 其他参考资料学习	系统自动完成学习记录统计与 成绩评定	系统评定	20
	作业	微知库作业完成情况	教师网评, 生成成绩统计表	教师评定	20

八、课程教学要求

(一) 教师

教师以师德师风作为第一标准,必须遵守《新时代高校教师职业行为十项准则》,认真履行教育教学职责。可具备以下能力。

1. 具备通信网络系统组网设计和维护能力;

- 2.具有较强的教学组织能力;
- 3.具有一定的信息化运用能力和课程资源开发能力;
- 4.具有较强的实践操作能力;
- 5.具有一定的企业工作或顶岗经验。

(二) 教材

1.教材选用的原则

- (1) 实用性和实践性。教材内容以"必需、够用"为原则,实践部分以易于联系实践,技能操作符合职业技能鉴定规范。
- (2)基础性。教材的深度和广度要符合高等职业教育的水平,即包含职业岗位必需的理论知识,还注重学生继续学习能力的培养。采取项目形式编写,根据就业趋势,加强职业能力培养。
- (3)综合性。教材内容要广泛,适用面广。内容要包括职业要求的理论知识和职业能力训练,还应包括非技术的职业素养培养。通过案例训练,着重培养学生对本职的高度责任心和强烈的责任感。
- (4) 形式多样性。教材内容组织形式要多样性,内容要灵活。要反映了科学技术的发展,有新技术、新工艺、新方法和新理论。课后训练设计到位,并引导学生进行广泛讨论。

2. 推荐教材

表 5 推荐教材表

序号	书名、封面	作者	出版社	出版时间	价格
1	大线短距离通信技术开发	张玲丽 虞沧	西南交通大学出版社	2021	39.8

	WINTERIORS WHITE TERM AND A SERVE OF THE SERVE OF T				
	物联网通信技术与应用				
2		赵军辉	华中科技大学出版社	2022	29
	物联网通信技术与应用				

(三) 教法

- 1.实验驱动法:以"知识讲解—提出问题—方案制定—实验实施—参数评价" 为主线开展教学。学生以小组形式分工协作完成实验,教师引导,学练结合,在 实施过程中实现知识、技能和素养的综合提升。
 - 2.示范教学法: 教师操作示范, 学生模仿训练, 掌握专业核心技能。
- 3.案例教学法:以企业典型工作案例引入教学,创设真实情境,培养职业素 养和岗位认同感。
- 4.合作探究法: 教师提问, 引导学生自主学习工作任务相关的知识点并进行合作探究, 学生通过获得信息、制定计划、完成决策、工作任务实施、过程控制、工作成果评价, 不断提升分析和解决问题的能力。
- 5.实践训练法: 在老师的示范操作下, 学生按照工作任务的流程进行实践训练, 掌握专业核心技能。

(四) 资源

网络课程网址: https://www.xueyinonline.com/detail/244429797

网络资源开发有微课视频、实操视频、动画、任务书、任务工单、课件、教案等资源。

(五)条件

本课程教学必须配置网络教学资源与实践设备,具体要求如表6所示。

 序号
 名称
 配置要求

 1
 网络通信技术实训室
 网络通信技术实验箱、网络通信技术实训平台、计算机、投影

 2
 智能网联实训室
 自动驾驶小车及其配套资源

表 6 设备与条件要求

九、教学进程与安排

本课程教学进程与安排如表7和8所示。

表7 教学进程

	任课学年与学期	1	20XX-20XX 学年第四学期
课程总学时数			64
	本学具	学期教学周数 16	
上兴铝兴吐八丽	本课程	果程周学时数 4	
本学期学时分配	其中	理论教学	32
	人	实践教学	32

表 8 课程安排

序号	学习模块	学习任务	总 学时	理论 学时	实践 学时
1	总线通信系	任务 1-1.CAN 总线通信系统测试	4	2	2
1	统测试	任务 1-2.LIN 总线通信系统测试	4	2	2
	无线局域	任务 2-1.WiFi 通信系统测试	8	4	4
2	网通信系	任务 2-2.蓝牙通信系统测试	8	4	4
统测试	任务 2-3.ZigBee 通信系统测试	8	4	4	
	无线广域网	任务 3-1.LoRa 通信系统测试	8	4	4
3	通信系统测	任务 3-2.NB-IoT 通信系统测试	8	4	4
无线广域网 <u>1</u>	任务 3-3.移动通信系统测试	4	2	2	
	自动驾驶通	任务 4-1.车内 CAN 总线通信系统测试	4	2	2
4	信系统测试	任务 4-2.车内局域网通信系统测试	4	2	2
		任务 4-3.车载与路侧通信系统测试	4	2	2
		总计	64	32	32