
 

Table S1 Location results of all eight testing events 

Event No. Location method 
Location result 

Location error/m 
x/m y/m z/m 

1 

P_SBL 381689.2 2997740.4 1108.4 20.6 

P_BL 381653.6 2997788.0 1112.8 41.1 

S_BL 381797.1 2997724.1 1061.3 128.0 

2 

P_SBL 381634.6 2997399.1 1073.9 31.6 

P_BL 381621.4 2997403.3 1073.9 40.4 

S_BL 381685.7 2997380.2 1111.1 42.8 

3 

P_SBL 381198.1 2996233.5 1035.2 23.6 

P_BL 381171.9 2996237.0 1016.4 25.7 

S_BL 381205.1 2996333.0 999.3 110.6 

4 

P_SBL 381709.5 2997792.1 1116.4 31.1 

P_BL 381704.1 2997790.8 1117.2 26.4 

S_BL 381737.5 2997781.4 1073.3 63.4 

5 

P_SBL 381681.0 2997778.6 1097.4 21.0 

P_BL 381731.2 2997710.8 1129.2 72.4 

S_BL 381698.5 2997691.5 1123.3 72.1 

6 

P_SBL 381592.3 2997241.0 1054.8 37.1 

P_BL 381561.1 2997243.5 1059.9 45.6 

S_BL 381651.9 2997254.6 1051.1 66.1 

7 

P_SBL 381520.5 2997624.5 1071.8 49.5 

P_BL 381532.4 2997625.4 1052.2 42.7 

S_BL 381423.9 2997544.9 1005.9 115.7 

8 

P_SBL 381446.5 2998037.6 1001.2 18.5 

P_BL 381421.1 2998062.1 1017.4 39.2 

S_BL 381433.4 2998060.7 1004.4 35.2 

Note: The location results correspond to the fifth-ranked location error among the ten time locations.

 



 

 

 
Figure S1 Typical signals and phase arrival time picking results of the blasting event 1 (The vertical red and green lines 

represent the picked P-wave and S-wave arrival times, respectively. The number indicates the sensor ID and D represents 

the linear distance between the sensor and the blasting event) 



 

 

 

Appendix A: Bayesian inversion-based MS source location method 
The parameter model m   is based on prior information of the data, and the Bayesian 

theorem is mathematically stated as: 
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where ( | )p m d  is the posterior probability of the model parameter m  under the constraint 

of d . For simplification, an uninformative prior is assumed (i.e., the prior probability ( )p m  

and the marginal likelihood ( )p d  are constants). Then, Eq. (A1) can be converted into 

( | ) ( | )p m d p d m , so that ( | )p m d  can be represented by the likelihood function ( | )p d m . 

Based on Eq. (A1), the likelihood function can be constructed as follows: 
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where   is the model parameter comprising the source coordinates (x0, y0, z0) and free 

weighting w (i.e., 
0 0 0( ,  ,  ,  )m m x y z w= ); G  and d  represent the computed and observed 

data, respectively, and G d−   contains two parts: the P-wave travel time difference part 
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are the covariances of matrix 11 2
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After constructing the Bayesian posterior probability density function, the parametric 

model is sampled by the Metropolis-Hastings (M-H) algorithm, where the M-H algorithm is an 

MCMC method that samples the parameters from the posterior probability distribution. First, a 

random input that contains four parameters (source coordinates 0 0 0
( ,  ,  )x y z   and free 

m



 

 

weighting (w) is generated. Then, one randomly selected parameter is updated in each iteration, 

where the updated step size is equal to the product of the search step size   and ( | )g m m , 

1 2 3
10  = = =   and 4

0.01 =   are used in this study. For example, the updating of the 

randomly selected parameter x from x0 to x′ can be written as: 
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The probability density function ( | )p d m   of a new parameter model 'm   can be 

calculated after updating the inversion parameters. The acceptance ratio ( | )m m   of the new 

model is given as: 
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The natural logarithm of Eq. (A5) is equivalent to: 
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According to Eq. (A2), ( | ) / ( | )p d m p d m  can be expressed as: 
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Taking the nature logarithm of ( | ) / ( | )p d m p d m , Eq. (A6) may be simplified as: 

( )
1 1

T T

e e e e

1 1 1 1
ln ( | ) / ( | ) = ln | | ln | | ( ) ( ) ( ) ( )

2 2 2 2
p d m p d m C C G d C G d G d C G d

− −

    − + − − − + − −  (A8) 

where eC   is the updated covariance matrix corresponding to the parameter model m  and 

G  corresponds to computed data from the updated model m . 

In the Bayesian inversion, the ( | ) / ( | )p d m p d m  is first calculated by Eq. (A8). The 

( )m' | m  may then be obtained by Eq. (A5). The acceptance of the new model m  depends 

on the ( )m' | m  and u , where [0,  1]u  is a uniform random number: the new model will 

be accepted when ( | )m m u   ; otherwise, the new model will be rejected. In this study, the 

number of MCMC iterations is set to 100000 for both synthetic events and mine blasting events, 

and the average of the last 5000 iterations in the post-burn-in period is taken as the final location 

result. 

 

Appendix B: Influence of bad phase arrival pickings 
The location accuracy will be affected when the picked arrival of the first sensor is not 

very good and the first sensor is always treated as a basis for subtracting. However, in this study, 

only 80% randomly selected sensors are used in the Bayesian inversion during each location 



 

 

iteration, where the numbering of the first sensor varies in the iteration. This will reduce the 

influence of larger picking errors. The detailed interpretation is given as follows: 

The theoretical travel time difference PT t   and t
ST   separately are calculated by 

subtracting the travel time of the first sensor from P
iT  and S

iT : 
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The observed travel time difference a
Pt  and a

St  (the picked P-wave and S-wave arrival 

time) separately are calculated by subtracting the arrival time of the first sensor 
1

P
t  and 

1

S
t  
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i
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i
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When the first sensor contains a picking error, the observed travel time difference will be 

written as: 
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where 1 1

P P Pt t t = +   and 1 1

S S St t t = +  , and Pt  and St  are the picking errors. 

Then, the location objective function  and modified location objective function F′ can 

be written as:  
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It is easy to see that F′ will be influenced by the ΔtP and ΔtS. In other words, the location 

result will be affected when the picked arrival of the first sensor is not very good and the first 

sensor is always treated as the basis for subtracting. However, in this study, only randomly 

selected sensors are used in the Bayesian inversion during each location iteration, where the 

numbering of the first sensor varies in the iteration. This strategy takes advantage that even if 

a few stations contain large picking errors, they will only influence the outcome of a specific 

iteration, rather than significantly affecting the global location result. 

 

Appendix C: Potential combination with other location objective function 
TAN et al [11] proposed a misfit function that combines P-wave and S-wave picks (as 

employed in our study), as well as the time difference between P-wave and S-wave picks 

( P St t t = −  ). This misfit function has been acknowledged for its enhanced reliability in 

constraining source locations in subsurface monitoring scenarios. 

( ) ( ) ( ) ( )
1

222 2
0 0

1 P P P 2 S S S 3 P S P S

1 1 1

N N N
i i i i i i i i

i i i

F t T t t T t T T t t  
= = =

 
 = − − + − − + − − −  

 
                 (C1) 

where
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and
 S

it
 

denote the observed P-wave and S-wave arrival times at the i-th receiver;
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denote the theoretical travel times;
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pt  and
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St  
denote the event occurrence time; 

α1−α3
 
are weighting factors and they are used to balance the contribution of each part; N is the 

number of sensors capable of picking up both P- and S-waves arrival times. 

However, this misfit function employs the L2-norm to construct the location misfit 

function, which prevents the independent variance computation of each component in the 

Bayesian inversion. To handle this, a modified misfit function is proposed as: 
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where w1 and w2 are weighting factors, 1 2 (0,  1),  w w   ,
 
and they are used to balance the 

contribution of each part. Eq. (C2) is the objective function of a P- and S-wave arrival time and 

P-S arrival time combined Bayesian location (P_S_P-SBL) method. 

The location performances of the two misfit functions Eqs. (8) and (C2) have been tested 

by two synthetic events. The synthetic events 1 and 2 separately are located at (381400, 

2997000,    1000) m and (381400, 2997000, 1200) m. The propagation velocities of P-wave 

and S-wave are set to 5200 and 3000 m/s, respectively. Gaussian noises with a standard 



 

 

deviation of 2 and 4 ms were included in the P-wave and S-wave theoretical arrival times, 

respectively. For the same synthetic event, 50 time locations are conducted. The location errors 

of the misfit functions (8) and (C2) are depicted in Figure C1. It can be seen that these two 

misfit functions have a similar location performance. 

 

 
Figure C1 Location errors of Bayesian method based on different misfit functions 

 


