Supplementary information

Text S1 Information on uranium tailings depot

The uranium tailing depot was established in 1976, designed for the containment of residues generated through leaching processes. It comprises tailings dams and underlying facilities for water recovery, with a total capacity of approximately 300000 m³. Since 2016, the mine has been completely shut down, and the tailing repository is currently in a state of maintenance.

Text S2 DNA extraction, PCR amplification, and illumine Miseq sequencing

All the above-mentioned samples' DNA was extracted and purified using an E.Z.N.A.® soil DNA kit following the manufacturer's instructions (Omega Bio-tek, Norcross, GA, USA). The DNA quality and concentrations were checked by agarose gel electrophoresis with the Quantus[™] Fluorometer (Promega, Madison, WI, USA).

PCR amplification of the 16S rRNA gene was performed based on the literature, which selected the primers 338F (50-ACTCCTACGGGAGGCAG CAG-30) and 806R (50-GGACTACHVGGGTW TCTAAT-30) to amplify the V3–V4 regions. The PCR amplification system contained 15 μ L 2×Taq master mix with 10 ng genomic DNA, 4 μ L PCR reaction buffer, 0.4 mmol/L of each primer, 2.5 mmol/L of dNTPs, and ultrapure water was added to a final volume of 50 μ L. The PCR conditions were as follows: 94 °C for 3 min, 27 cycles of 94 °C for 30 s, 45 °C for 20 s, 72 °C for 30 s, and a final extension of 72 °C for 5 min. All PCR products were visualized on agarose gels (2% in TAE buffer) containing ethidium bromide and purified with an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA). Amplification products complete high-throughput gene sequencing was performed in the Illumina Miseq platform (Majorbio BioPharm Technology Co., Ltd., Shanghai, China).

Text S3 Co-occurrence network analysis

After filtration, OTU-level microbial taxa were selected for species coexistence analysis. Only these OTUs with Spearman |R|>0.6 and statistical significance p<0.001 were considered robust and then incorporated into the network analysis. An adjacency network was generated by the "igraph" package and visualized using Gephi v0.9.2. The network's topological properties, such as node degree, betweenness, closeness, clustering coefficient, and graph density, were considered keystone taxa.

<i>p</i> -value	r^2	
0.386	0.113	
		_
Table S2 Correlations between	een phylum taxa and u	ranium concentration

Table S1	ANOVA	A correlation	analysis	between p	pH and	uranium	concentration
----------	-------	---------------	----------	-----------	--------	---------	---------------

Table 52 Contentions between phytam taxa and tra				
Phylum	Uranium concentration			
Proteobacteria	0.590**			
Actinobacteria	-0.177			
Firmicutes	-0.21			

Note: ** indicates p<0.01

Group	Phylm	Genus	Id	Degree	Betweenness
	Proteobacteria	Burkholderia-Caballeronia-Paraburkholderia	OTU1587	13	9.378922
	Firmicutes	unclassified_fLachnospiraceae	OTU1341	13	9.378922
	Firmicutes	Caproiciproducens	OTU1187	16	11.251337
	Firmicutes	unclassified_fRuminococcaceae	OTU1234	16	11.251337
	Firmicutes	Desulfitobacterium	OTU873	17	14.662751
	Firmicutes	Ruminiclostridium	OTU2097	17	14.662751
	Firmicutes	Caproiciproducens	OTU2159	17	14.662751
	Firmicutes	unclassified_fRuminococcaceae	OTU2478	17	14.662751
СК	Firmicutes	Desulfitobacterium	OTU1372	17	14.662751
	Firmicutes	Ruminiclostridium	OTU2154	17	14.662751
	Actinobacteria	Rhodococcus	OTU2233	16	11.251337
	Firmicutes	Oxobacter	OTU812	13	8.670588
	Firmicutes	norank_fVeillonellaceae	OTU3112	13	8.670588
	Firmicutes	Ruminiclostridium_1	OTU1193	13	8.670588
	Firmicutes	Ruminiclostridium_1	OTU2354	17	65.133333
	Firmicutes	Ruminiclostridium_1	OTU1517	17	65.133333
	Firmicutes	Fonticella	OTU2393	17	65.133333
	Firmicutes	Ruminiclostridium	OTU2154	14	92.452993
	Firmicutes	Anaerocolumna	OTU1373	14	92.452993
HS	Firmicutes	Clostridium_sensu_stricto_10	OTU1187	14	92.452993
	Firmicutes	Anaerocolumna	OTU3112	14	92.452993
	Firmicutes	Clostridium_sensu_stricto_12	OTU1234	14	29.141157
	Firmicutes	Clostridium_sensu_stricto_1	OTU2496	14	29.141157
	Firmicutes	Clostridium_sensu_stricto_10	OTU1192	14	29.141157
	Proteobacteria	Azotobacter	OTU2241	14	29.141157
	Firmicutes	Oxobacter	OTU812	14	29.141157
	Firmicutes	Ruminiclostridium_1	OTU1517	13	21.741157
	Firmicutes	unclassified_f_Lachnospiraceae	OTU2097	11	35.511418
	Firmicutes	Lachnoclostridium_5	OTU2251	11	35.511418
	Firmicutes	unclassified_f_Ruminococcaceae	OTU2736	11	35.511418
GP	Firmicutes	Desulfitobacterium	OTU2495	11	61.909524
	Firmicutes	Ruminiclostridium_1	OTU1517	11	91.843728

 Table S3 Distributions of degree and betweenness of nodes (Putative keystone taxa based on the criteria of nodes degree >10 and betweenness <100)</th>

Figure S1 Venn diagrams with numbers of common or unique OUT: (a) 1 d; (b) 14 d; (c) 28 d

Figure S2 Rarefaction curves (a–d) in treatment and control during different times: (a) Shannon; (b) Simpson; (c) Chao; (d) ACE

Figure S3 Principal coordinate analysis of different bioremediation treatments and analysis time

Figure S4 Distributions of degree and betweenness of nodes: (a) CK; (b) HS; (c) GP (Putative keystone taxa based on the criteria of nodes degree > 10 and betweenness < 100)

Figure S5 Co-occurrence network analysis of additives-microbial interactions among the most 500 abundant OTUs in samples

Figure S6 Spearman's rank correlation heatmap (p < 0.05 *, p < 0.01**) used to study the correlation between microbial communities at Day 28