Supplementary materials

Text S1

BCR method

Acid soluble fraction: 0.5 g dust sample after air drying and sieving was weighed in a 50 mL polyethylene centrifuge tube, and 20 mL CH₃COOH (0.11 mol/L, pH=2.85) was added to the centrifuge tube and placed in a thermostatic oscillator at 252 °C for 16 h. After standing, it was centrifuged at 3000 r/min for 10 min and filtered with a 0.45 μ m microporous membrane. The concentrations of heavy metal(loid)s in the filtrate were determined by ICP-OES (Agilent 7500 Series, Thermo Scientific, USA). After adding 10 mL deionized water to the filter residue and washing twice, the washing liquid was discarded.

Reducible fraction: 20 mL NH₂OH·HCl (0.5 mol/L, pH=1.5) was added to the remaining solid filter residue in the acid extractable fraction, and placed in a thermostatic oscillator at 252 °C for 16 h. After standing, it was centrifuged at 3000 r/min for 10 min, and filtered with a 0.45 μ m microporous membrane. The filtrate was determined by ICP-OES. After adding 10 mL deionized water to the filter residue and washing twice, the washing liquid was discarded.

Oxidizable fraction: 10 mL H_2O_2 (8.8 mol/L, adding a few drops of nitric acid to make pH of 2–3) was added to the remaining solid filter residue in the reducible fraction. It was placed in a thermostatic oscillator and shaken at 252 °C for 30 min. Then it was heated and evaporated in a 90 °C water bath. After cooling, 20 mL CH₃COONH₄ (1 mol/L, adding a few drops of nitric acid to make pH=2) was added. It was placed in a thermostatic oscillator and shaken at (25±2) °C for 16 h. After standing, it was centrifuged at 3000 r/min for 10 min. The filtrate was filtered through a 0.45 µm microporous membrane, and the concentration of each heavy metal(loid) was determined by ICP-OES. The filter residue was washed twice with 10 mL deionized water, and then the washing liquid was discarded.

Residue fraction: The oxidizable residual fraction was transferred to the tetrafluoroethylene digestion tank after acid cleaning, and the digestion was carried out according to the experimental steps of heavy metal(loid) element analysis of solid samples, and the concentration of each heavy metal(loid) was determined by ICP-OES.

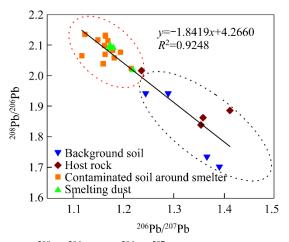


Figure S1 Correlation between 208Pb/206Pb and 206Pb/207Pb in different media

Table SI Stat	Table ST Statistical table of 10 isotope fatto in son hear lead smelting plant							
Sample	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁷ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁷ Pb		
BD	38.694	15.681	18.503	1.180	2.091	2.467		
BFD	38.612	15.675	18.394	1.173	2.099	2.463		
SL-1	38.647	15.675	18.375	1.172	2.103	2.465		
SL-2	38.600	15.671	18.378	1.173	2.100	2.463		
SL-3	38.568	15.668	18.329	1.170	2.104	2.462		

Table S1 Statistical table of Pb isotope ratio in soil near lead smelting plant

Table S2 Modal mineral phase composition of dust samples

Mineral species	Chemical formula	wt/%
Zinkosite		21.64
Rhodochrosite	MnCO ₃	12.41
lead sulfate	PbSO ₄	6.59
Hematite	Fe ₂ O ₃	5.6
Calcium silica lead-zinc ore	$Zn_{1.74}Cd_{0.263}Fe_{0.216}Si_{0.983}Cl_{0.362}Mg_{0.258}S_{1.47}F_{0.44}O_4$	4.1
Psilomelane	mMnO·MnO ₂ ·nH ₂ O	3.99
Anhydrite	CaSO ₄	3.62
Galena	$Zn_{2.95}Cd_{0.292}Si_{0.127}Cl_{0.621}S_{1.3}O_{4.71}$	3.08
Paulmooreite	Pb5(AsO4)3Cl	2.35
Pyrite	FeS_2	2.33
Others	_	34.29

Table S3 Modal mineral phase composition of topsoil samples

Mineral species	Chemical formula	wt/%
Quartz	SiO ₂	25.61
Calcite	CaCO ₃	18.96
Dolomite	CaMg(CO ₃) ₂	8.81
Muscovite	Al ₂ K ₂ O ₆ Si	8.68
Orthoclase	KAlSi ₃ O ₈	5.70
Andesine	(Na,Ca)[A1(A1,Si)Si ₂ O ₈]	5.06
Axinite	(Ca,Fe,Mn,Mg)3Al2BSi	4.36
Albite	$Na_2O \cdot Al_2O_3 \cdot 6SiO_2$	3.14
Hematite	Fe ₂ O ₃	2.17
Pyrite	FeS ₂	2.16
Fayalite	$(Mg,Fe)_2[SiO_4]$	1.54
Others	—	13.81