JCSU-2401-0028 Supplementary materials

Figure S1 TEM/EDX mapping of GCN/EAMS-TiO₂ nanocomposite

Figure S2 Nyquist plots for epoxy coating with different mass percentages of $GCN/EAMS-TiO_2$ immersed in seawater for 1 d

Figure S3 Bode resistance plots for (a) bare mild steel, (b) pure EP, (c) EP/TiO_2 , (d) $EP/EAMS-TiO_2$, (e) EP-GCN/TiO₂, and (f) EP-GCN/EAMS-TiO₂ nanocomposite coated mild steel for 1 d, 7 d, 14 d, and 28 d of immersion in seawater

Figure S4 Bode phase angle plots for (a) bare mild steel, (b) pure EP, (c) EP-TiO₂, (d) EP/EAMS-TiO₂, (e) EP-GCN/TiO₂, and (f) EP-GCN/EAMS-TiO₂ nanocomposite coated mild steel for 1 d, 7 d, 14 d, and 28 d of immersion in seawater

Figure S5 Equivalent electrochemical circuit for (a) bare mild steel, (b) pure EP, EP/TiO₂, EP/EAMS-TiO₂, EP-GCN/TiO₂ and EP-GCN/EAMS-TiO₂ coated steel for several days in seawater

Figure S6 SECM analysis of mild steel coated with GCN/EAMS-TiO₂ nanoparticles with (a) 0.2 % GCM; (b) 0.4% GCN; (c) 0.6% GCN and (d) 0.8% GCN for 1 d immersion in seawater at tip potential of 0.60 V vs. Ag/AgCl/KCl reference electrode for the detection of ferrous ions

Figure S7 Salt spray analysis of (a) pure EP, (b) EP/TiO₂, (c) EP/GCN, (d) EP/EAMS-TiO₂, (e) EP-GCN/TiO₂ and (f) EP-GCN/EAMS-TiO₂ nanocomposite coated mild steel after 28 d exposure to seawater