JCSU-2401-0034 Supplementary materials

S1 Experiment

Table S1 The	e main elemen	t composit	ion of X8	0 pipeline	steel		wt.%		
Mn	Cr	N	i	Si	Cu	Мо	Nb		
1.754	0.235	0.20)6	0.204	0.174	0.125	0.052		
С	Al	Ti		Р	V	S	Fe		
0.047	0.027	0.0	14	0.008	0.002	0.001	Balance		
Table C2 Th		4		00.005 -:					
Table 52 The	e main elemen	Impuri	tios	99.995 ZIII	ringot		WL.%		
Dh	Ci	To	Cu	S.n.	A 1	Summation o	f Zn		
0.003	0.002	0.001	0.001	0.001	0.001	0.005	99.995		
Table S3 Co	mposition of 1	LATCC 1	249 med	ium					
Comp	onent		Comp	osition		Dosa	ige		
			NH	4Cl		2.0	g		
			Cas	SO_4		5.0 g			
Component I			Mg	SO ₄	1.0 g				
			Na ₃ C ₆ H ₅ O ₇ (trisodium citrate)				1.0 g		
		Distille	d water		400 1	mL			
Compo		K_2H	PO ₄		0.5	g			
Component n		Distilled water				200 1	mL		
		Na	C3H5O3 (80	odium lactat	e)	3.5	g		
Compor	nent III		Yeast	extract		1.0	g		
			Distille	d water		400 1	nL		
Compor	nent IV Fi	lter-sterilize lution to 1 L	d 5wt% (N of mediu	NH4)2Fe(SO4 m prior to in)2 (ferrous an oculation	nmonium sulfate).	Add 20 mL of this		
Table S4 The	e main chemic	al composi	tion of ar	tificial sea	water		g/L		
NaCl	MgSO ₄ ·	7H ₂ O	KCl	Ca	Cl ₂ ·2H ₂ O	CaCl ₂ ·2H ₂ O	Impurity ion		
21.67	5.0	0	4.00		1.33	1.33	0.83		
Table S5 Co	rrosion rate of	the steel a	fter 360-h	a exposure	in the tidal e	nvironment	μm/a		
Environn	nent	HTZ		MTZ		LTZ	FIZ		
SRB		397±5		353±13		249±5	69±6		
SRB-C	P	161±17		102±6		53±2	9±4		
Table S6 Co	rrosion area ra	tio of the s	teel after	360-h exp	sure in the t	idal environment	0/_		
Environn	nent	HTZ		MTZ	sure in the t	LTZ	FIZ		
SDD	iont	93 0+1 1		88 4+4 4	Q	<u>5 2+2 1</u>	167+04		
SKD SKD	'P	75 2+0 0		50.+ <u>+</u> +.+	0 1	5.2 ± 2.1	10.7+2.2		
SKD-C	1	13.4±0.7		JJ.J±7.4	2.	5.0±1.2	10.7-2.2		

Figure S1 Schematic diagram of the tidal simulation device [2] (a), set-up of the specimens for weight loss measurements (b) (HTZ: high tidal zone; MTZ: middle tidal zone; LTZ: low tidal zone; FIZ: full immersion zone)

S1.1 Formula S1

The cathode protection potential (E_{CP} , V vs SCE) was calculated as follows [1]:

$$E_{\rm CP} = E_{\rm Zn} + \beta_{\rm Zn} \ln \left(1 + \frac{A_2}{A_1} \right) \tag{S1}$$

where E_{Zn} represented the corrosion potential of Zn-SA in seawater (-1.063 vs SCE); β_{Zn} represented the andic slope of the Zn dissolution (0.06 V/dec); A_1 and A_2 represented the areas of the Zn-SA and the protected metal, respectively.

S1.2 Weight loss measurements

Before the tidal experiment, the initial weight of the specimens designated for the weight loss measurements were recorded using analytical balance ($\Delta m = 0.1$ mg). Then, the specimens

were positioned in the set-up for the tidal experiment as showed in Figure S1(b), connected with the Zn-SA, and subjected to the marine tidal experiment. After the 360-h experiment, the specimens were taken out from the vessels. And the corrosion products on the specimen surfaces were removed using the rust remover consisting of 3.5 g hexamethylenetetramine, 500 mL hydrochloric acid (36 wt.%) and 500 mL deionized water. Then, the specimen surfaces were cleaned using deionized water and ethyl alcohol, and the weight of the specimens were once again recorded using the same analytical balance. Three parallel specimens were used for each group of the weight loss measurement, and the corrosion rate, R, of the specimen was calculated by the formula S2.

$$R = \frac{87600 \times (m_0 - m_1)}{\rho t A}$$
(S2)

where m_0 and m_1 represented the initial and final weights of the specimens, respectively; ρ and A represented the density (g/cm³) and the total exposed area (cm²) of the protected metals; t represented the experiment duration (h).

S1.3 Calculation of inhibition efficiency of cathode protection

The inhibition efficiency of cathode protection against the *D. desulfuricans* corrosion was determined using the formula:

$$\eta = \frac{R_1 - R_2}{CR_1} \times 100\%$$
(S3)

where η was inhibition efficiency of cathode protection; the R_1 and R_2 were the corrosion rates of the specimens in the conditions without and with Zn-SA cathode protection, respectively.

S2 Results and analysis

Figure S2 Macroscopic photos of the corrosion products (a-d), corrosion morphologies (a_1-d_1) and corroded area (a_2-d_2) of the steel after 360-h exposure in the biotic tidal environment without the cathode protection

Figure S3 Macroscopic photos of the corrosion products (a-d), corrosion morphologies (a1-d1) and corroded area (a2-d2) of the steel after 360-h exposure in the biotic tidal environment with the Zn-SA cathode protection

Table S7 EDS results of the corrosion product on the specimen surface									
Position	Fe	0	S	Mg	Ca	Cl	Mn	Na	Zn
1	33.88	61.45	1.75	0.59	0.95	0.26	0.31	0.81	
2	32.68	64.50	2.01	0.19	0.10	0.11	0.07	0.34	
3	32.45	61.98	1.37	0.72	0.57	0.10	0.12	1.69	
4	41.86	53.79	1.21	0.73	0.61	0.12	0.18	1.50	
5	38.73	57.11	1.58	0.86	0.13	0.05	0.68	0.86	
6	57.86	39.49	0.89	0.05	0.06	0.01	1.09	0.55	
7	5.71	61.11	0.82	21.64	0.40	0.85	0.54	3.34	5.57
8	11.06	66.19	0.74	1.67	1.12	0.11	0.08	8.70	10.33
9	48.32	33.61	0.94	0.67	0.22		1.73	7.05	7.46
10	14.28	68.90	0.72	1.79	0.37		0.49	1.53	11.90
11	52.21	26.98	0.82	2.21	1.06	0.27	2.55	2.53	11.37
12	48.68	36.41	0.87	2.49	0.55	0.01	1.09	5.58	4.32
13	10.01	64.53	0.87	3.88	0.72	0.25		10.36	9.38

Figure S4 XRD spectra of the corrosion products on the steel surfaces after 360-h exposure in the biotic tidal environments: (a)Without the cathode protection; (b)With the Zn-SA cathode protection

Figure S5 SEM images of the corrosion morphologies of the steel surfaces after 72-h (a–d), 168-h (a_1 – d_1) and 360-h (a_2 – d_2) exposures in the biotic tidal environment without the cathode

Figure S6 SEM images of the corrosion morphologies of the steel surfaces after 72-h (a–d), 168-h (a_1 – d_1) and 360-h (a_2 – d_2) exposures in the biotic tidal environment with the Zn-SA cathode protection

Figure S7 The cross-section of pits on the steel surfaces after 360-h exposure in the biotic tidal environment without cathode protection (a–d) and with Zn-SA cathode protection (a₁–d₁): (a, a₁) HTZ; (b, b₁) MTZ; (c, c₁) LTZ; (d, d₁) FIZ

 Table S8 EDS results of the corrosion product on the section morphology

Position	Fe	0	S	Mg	Ca	Cl	Mn	Na	Zn
1	43.61	53.31	1.43	0.15	0.87	0.10		0.52	
2	38.91	59.40	0.04	0.27	0.29	0.12		0.96	
3	18.66	75.50	1.91	0.39	2.44	1.10			
4	47.37	51.57		0.09	0.18	0.26		0.52	
5	23.91	68.33	1.62	5.62	0.24	0.14		0.15	
6	35.42	60.46		3.18	0.45	0.17		0.31	
7	49.35	45.32	2.01		0.30	1.29	1.43	0.30	
8	33.67	62.02	1.12	1.27	0.44	0.83	0.65		
9	40.24	58.17				1.59			
10	26.73	57.49		8.2		1.4			6.18
11	32.27	56.48		6.64	0.84	1.39			2.38
12	20.10	59.14		22.39		3.07			1.50
13	14.34	56.49	0.51	4.39		2.60		7.69	13.97
14	0.88	54.11		3.18	1.05	1.43		16.61	22.74
15	18.83	60.07	0.22	5.16	2.29			6.26	7.17

at.%

Figure S8 EDS mapping of the cross-section of the steel specimen after 360-h exposure in the biotic marine environment with the Zn-SA cathode protection

Time	Environment	Tidal zone	Ecorr (vs SCE)/mV	$J_{\rm corr}/(\mu {\rm A}\cdot {\rm cm}^{-2})$	$b_{\rm c}/({\rm mV}\cdot{\rm dec}^{-1})$
		HTZ	-0.662	49.0	409
	CDD	MTZ	-0.670	43.5	409
	SKB	LTZ	-0.666	19.1	338
169 h		FIZ	-0.664	4.76	394
108 h		HTZ	-0.784	6.26	263
	CDD CD	MTZ	-0.781	2.69	275
	SKB-CP	LTZ	-0.708	0.836	235
		FIZ	-0.728	0.969	323
		HTZ	-0.654	76.1	144
	CDD	MTZ	-0.654	63.0	448
	SKB	LTZ	-0.664	37.3	402
260 h		FIZ	-0.677	4.91	325
360 h		HTZ	-0.767	5.25	291
	SDD CD	MTZ	-0.713	1.19	255
	SKD-CP	LTZ	-0.725	0.522	177
		FIZ	-0.715	0.508	251

Table S9 Fitting results of the polarization curves of the specimens at different zones after 168 h and 360 h tidal cycle in the seawater

Figure S9 Nyquist plots of the steel during the tidal cycle in the biotic tidal environment without cathode protection: (a, b) HTZ; (c, d) MTZ; (e, f) LTZ; (g, h) FIZ

Figure S10 Nyquist plots of the steel during the tidal cycle in the biotic tidal environment with Zn-SA cathode protection: (a, b) HTZ; (c, d) MTZ; (e, f) LTZ; (g, h) FIZ

Figure S11 Equivalent circuits for EIS fitting: R_s -solution resistance; Q_f -capacitance of corrosion products film; R_f -resistance of corrosion products film; Q_{df} -capacitance of electrical double-layer; R_{ct} -charge transfer resistance of electrical double-layer; W-Warburg impedance

Environment	Time/h	$R_{\rm s}/(\Omega \cdot {\rm cm}^2)$	$Y_{\rm f}/({\rm S}\cdot{\rm s}^n\cdot{\rm cm}^{-2})$	nf	$R_{\rm f}/(\Omega \cdot {\rm cm}^2)$
	24	11.66	3.104×10 ⁻⁴	0.7892	23.57
Without CP	120	11.53	1.560×10^{-2}	0.5444	12.73
	240	11.78	2.001×10^{-2}	0.4425	35.85
	360	11.05	5.022×10 ⁻³	0.4806	16.56
	24	10.52	2.171×10^{-3}	0.631	34.19
With CD	120	16.3	1.314×10 ⁻³	0.6701	252.2
with CP	240	59.16	7.500×10^{-4}	0.5733	1379
	360	108.8	4.973×10 ⁻⁴	0.5777	1256
Environment	$Y_{\rm dl}/({\bf S}\cdot{\bf s}^n\cdot{\bf cm}^{-2})$	n _{dl}	$R_{\rm ct}/(\Omega \cdot {\rm cm}^2)$	$W/(S \cdot s^{0.5} \cdot cm^{-2})$	χ^2
	8.285×10^{-4}	0.4975	1.409		2.627×10^{-4}
With and CD	1.050×10^{-2}	0.6531	0.5822		2.700×10^{-4}
without CP	2.403×10^{-2}	0.7386	0.4662		1.721×10^{-4}
	1.755×10^{-2}	0.5166	0.1575		5.248×10^{-4}
	2.385×10 ⁻⁵	0.7463	1.12	7.850×10 ⁻³	2.092×10 ⁻³
W'4 CD	1.375×10^{-3}	0.7887	1.628	2.796×10 ⁻³	6.923×10 ⁻⁴
With CP	1.290×10^{-4}	0.8137	7.618	4.850×10^{-4}	3.908×10 ⁻³
	4.442×10^{-5}	0.7154	10.53	4.489×10^{-4}	1.725×10 ⁻³

Table S10 Fitting results of the EIS data of the steel in HTZ

Environment	Time/h	$R_{\rm s}/(\Omega \cdot {\rm cm}^2)$	$Y_{\rm f}/({\rm S}\cdot{\rm s}^n\cdot{\rm cm}^{-2})$	nf	$R_{\rm f}/(\Omega \cdot {\rm cm}^2)$
Without CP	24	11.49	1.369×10 ⁻³	0.6252	61.52
	120	10.93	6.624×10^{-3}	0.6134	16.65
	240	11.97	1.258×10^{-2}	0.6112	53.76
	360	9.845	33.98×10 ⁻³	0.5308	6.46
With CP	24	8.506	9.270×10 ⁻⁴	0.7964	208.2
	120	17.89	8.684×10^{-4}	0.6297	1054
	240	36.67	2.327×10^{-4}	0.6975	1681
	360	139.4	2.568×10^{-4}	0.6368	1543
Environment	$Y_{\rm dl}/(\mathbf{S}\cdot\mathbf{s}^n\cdot\mathbf{cm}^{-2})$	$n_{ m dl}$	$R_{\rm ct}/(\Omega \cdot {\rm cm}^2)$	$W/(S \cdot s^{0.5} \cdot cm^{-2})$	χ^2
	3.413×10 ⁻³	0.8192	1.956		4.688×10 ⁻³
	8.097×10^{-3}	0.6838	1.699		3.287×10 ⁻⁴
without CP	9.180×10 ⁻³	0.8306	1.424		8.899×10 ⁻⁴
	2.069×10^{-2}	0.6007	0.3887		8.040×10 ⁻⁴
	4.425×10 ⁻⁵	0.6702	1.278	1.212×10^{-2}	8.789×10 ⁻⁴
WH CD	5.135×10^{-4}	0.8921	7.747	1.186×10^{-3}	1.479×10^{-2}
with CP	6.637×10 ⁻⁵	0.8285	14.18	3.822×10 ⁻⁴	1.205×10^{-3}

Table S11 Fitting results of the EIS data of the steel in MTZ

Table S12 Fitting results of the EIS data of the steel in LTZ

Environment	Time/h	$R_{\rm s}/(\Omega \cdot {\rm cm}^2)$	$Y_{\rm f}/({\rm S}\cdot{\rm s}^n\cdot{\rm cm}^{-2})$	$n_{ m f}$	$R_{\rm f}/(\Omega \cdot { m cm}^2)$
	24	11.59	4.756×10 ⁻⁴	0.7712	26.93
	120	9.662	4.381×10^{-3}	0.6561	19.3
without CP	240	10.49	7.680×10^{-3}	0.6345	67.99
	360	8.668	5.456×10 ⁻³	0.689	22.61
With CP	24	10.11	2.306×10 ⁻³	0.6605	1132
	120	41.23	2.004×10^{-4}	0.7584	2924
	240	131.9	1.645×10^{-4}	0.7083	11340
	360	155.6	1.451×10^{-4}	0.6894	10890
Environment	$Y_{\rm dl}/({\rm S}\cdot{\rm s}^n\cdot{\rm cm}^{-2})$	$n_{ m dl}$	$R_{\rm ct}/(\Omega \cdot {\rm cm}^2)$	$W/(S \cdot s^{0.5} \cdot cm^{-2})$	χ^2
	2.102×10^{-4}	0.5547	1.002		2.742×10^{-4}
With and CD	4.730×10 ⁻³	0.7101	1.82		8.805×10^{-5}
Without CP					
	1.458×10^{-3}	0.8728	1.619		9.611×10 ⁻⁴
	1.458×10^{-3} 7.367×10 ⁻⁴	0.8728 0.912	1.619 0.7601		9.611×10^{-4} 4.356×10^{-4}
	1.458×10 ⁻³ 7.367×10 ⁻⁴ 1.202×10 ⁻²	0.8728 0.912 0.7364	1.619 0.7601 1.318	2.822×10 ⁻²	9.611×10 ⁻⁴ 4.356×10 ⁻⁴ 6.664×10 ⁻⁴
With CD	$ \begin{array}{r} 1.458 \times 10^{-3} \\ \hline 7.367 \times 10^{-4} \\ \hline 1.202 \times 10^{-2} \\ 5.463 \times 10^{-4} \end{array} $	0.8728 0.912 0.7364 0.7562	1.619 0.7601 1.318 18.22	2.822×10 ⁻² 1.407×10 ⁻³	9.611×10 ⁻⁴ 4.356×10 ⁻⁴ 6.664×10 ⁻⁴ 7.942×10 ⁻⁴
With CP	$ \begin{array}{r} 1.458 \times 10^{-3} \\ \hline 7.367 \times 10^{-4} \\ \hline 1.202 \times 10^{-2} \\ 5.463 \times 10^{-4} \\ \hline 2.160 \times 10^{-6} \\ \end{array} $	0.8728 0.912 0.7364 0.7562 0.7849	1.619 0.7601 1.318 18.22 25.95	2.822×10 ⁻² 1.407×10 ⁻³ 3.317×10 ⁻⁴	9.611×10 ⁻⁴ 4.356×10 ⁻⁴ 6.664×10 ⁻⁴ 7.942×10 ⁻⁴ 2.199×10 ⁻²

Environment	Time/h	$R_{\rm s}/(\Omega \cdot {\rm cm}^2)$	$Y_{\rm f}/({\rm S}\cdot{\rm s}^n\cdot{\rm cm}^{-2})$	nf	$R_{\rm f}/(\Omega \cdot {\rm cm}^2)$
	24	12.11	1.973×10 ⁻⁴	0.8268	69.77
	120	8.232	6.930×10 ⁻⁴	0.8025	2314
without CP	240	8.385	6.499×10^{-4}	0.8449	1849
	360	7.862	9.843×10 ⁻⁴	0.8413	409.6
	24	8.668	5.401×10 ⁻⁴	0.7631	1465
W'4 CD	120	14.7	1.919×10^{-4}	0.7577	4214
With CP	240	155.6	1.183×10^{-4}	0.6418	16080
	360	137.2	1.719×10^{-4}	0.7031	18850
Environment	$Y_{\rm dl}/({\rm S}\cdot{\rm s}^n\cdot{\rm cm}^{-2})$	ndl	$R_{\rm ct}/(\Omega \cdot {\rm cm}^2)$	$W/(S \cdot s^{0.5} \cdot cm^{-2})$	χ^2
	3.360×10 ⁻⁴	0.5981	2.312		1.025×10^{-3}
With and CD	3.426×10 ⁻⁴	0.7891	13.89		5.109×10^{-4}
without CP	2.277×10^{-4}	0.8969	15.87		1.615×10 ⁻³
	5.217×10 ⁻⁵	0.6584	8.331		1.778×10^{-3}
	6.435×10 ⁻²	0.7675	2.466	1.036×10^{-3}	1.642×10^{-5}
With CP	4.832×10 ⁻⁵	0.7416	19.16	4.163×10 ⁻³	4.076×10^{-4}
	6.103×10 ⁻⁵	0.9574	54.9	5.194×10 ⁻⁴	2.978×10^{-3}
	6.315×10 ⁻⁶	0.7714	151.9	2.085×10^{-4}	1.421×10^{-1}

Table S13 Fitting results of the EIS data of the steel in FIZ

S2.1 Macroscopic morphology of corrosion products and corrosion scene

Figure S2 showed the macroscopic morphology of corrosion products and the steels' corroded state after a 360-h exposure to tidal environment without cathode protection. The corrosion products in the FIZ were mainly reddish-brown (Figure S2(d)), while the yellow-brown and/or reddish-brown corrosion products were randomly covered on the steel surface in the marine tidal environment (Figures S2(a)–(c)). After removing the corrosion products (Figures S2(a₁)–(d₁)), areas covered by yellow-brown corrosion products exhibited relatively mild corrosion, contrasting with areas covered by reddish-brown products, which displayed more severe corrosion. Analysis using image Pro Plus 6.0 revealed that areas with substantial corrosion accounted for (93.0 \pm 1.1)% in HTZ, (88.4 \pm 4.4)% in MTZ, and only (16.7 \pm 0.4)% in FIZ (Table S6).

The macroscopic morphology of corrosion products and the steels' corroded condition after 360-h exposure to tidal environment under the Zn-SA cathode protection is showed in Figure S3. In the FIZ, the steel surface exhibited intermittent patches of yellowish-brown corrosion products (Figure S3(d)), while most of the corrosion products in the marine tidal environment were light-yellow, intermixed with white deposits and sporadic reddish-brown corrosion products. Subsequent removal of these corrosion products revealed areas covered by light-yellow corrosion products demonstrating relatively high corrosion levels, while uncovered areas exhibited milder corrosion effects (Figures S3(a₁)–(d₁)). Statistical analysis indicated that under the Zn-SA cathode protection, the proportions of areas experiencing severe corrosion reduced to $(75.2\pm0.9)\%$, $(59.5\pm9.4)\%$, $(25.0\pm1.2)\%$ and $(10.7\pm2.2)\%$ in the HTZ, MTZ, LTZ and FIZ, respectively. This was consistent with the corrosion rate findings.

S2.2 XRD results

The XRD patterns of the corrosion products on the steel surfaces after 360-h exposure in the marine tidal environment without and with cathode protection are shown in Figure S4. In

the absence of cathode protection, the corrosion products were mainly composed of FeOOH, Fe_2O_3 , Fe_3O_4 and FeS. In addition, NaCl was detected in the corrosion products of the specimens from the FIZ. However, under the Zn-SA cathode protection, no obvious peaks of iron oxides in the corrosion products on the steel surface were observed across all tidal zones, suggesting a significant reduction in the iron oxide content within the corrosion products.

S2.3 Corrosion morphology of the steel

The corrosion morphology of the steel in the tidal environments without and with cathode protection, are shown in Figures S5 and S6, respectively. In the absence of cathode protection, there were some small pits on the steel surface across all tidal zones at 72th h, signaling incipient pitting corrosion. Over time, these pits grew in both size and number. The difference in corrosion morphology of the steel gradually increased in different tidal zones. Notably, in the HTZ, the size and number of corrosion pits notably escalated as the experiment progressed. Under the Zn-SA cathode protection, the evolution of corrosion morphology in each tidal zone was similar to that observed without cathode protection. However, the size and number of the corrosion pits significantly decreased under the cathode protection, distinctly indicating the inhibition role of the cathode protection.

References

- MU Xin, WEI Jie, DONG Jun-hua, et al. The effect of sacrificial anode on corrosion protection of Q235B steel in simulated tidal zone [J]. Acta Metallurgica Sinica, 2014, 50: 1294–1304.
- [2] ZHOU Xiao-bao, WANG Qin, SU Hui, et al. Low efficiency of cathodic protection in marine tidal corrosion of X80 steel in the presence of Pseudomonas sp [J]. Bioelectrochemistry, 2024, 157: 108656. DOI: 10.1016/j.bioelechem. 2024.108656.