Supporting information

Sample	Mass activity/ (A·mg ⁻¹)	Specific activity/ (mA·cm ⁻²)	Stability	Ref.
Pt1Ru2/MPC 950	2.40	9.50	1.39 h (ca. 2.20 A/mg) ^c	[1]
PTP bbi/PtBi NP	7.40	25.1	1 h (ca. 133 mA/mg) ^b	[2]
P-Pd ₅₀ Au ₄ Ag ₁	8.08	7.25	1000 cycles (6.43 A/mg) ^a	[3]
PtPb/Pt@sub-SbO	7.20	28.7	1.94 h (ca. 112 mA/mg) ^b	[4]
Pd/G:A	1.35	1.32	1 h (200 mA/mg) ^b	[5]
UCS PtZn iNPs	1.45	1.71	10000 cycles (94%) ^a	[6]
Rh/F-graphene-2	0.34	ca. 6.20	100 cycles (65%) ^a	[7]
PdMoP _{0.01} /OB-CNT-N	2.18	N.A.	1 h (211 mA/mg) ^b	[8]
Pd/NPC-900	0.95	1.61	N.A.	[9]
Pt-ALs/CrN	5.17	N.A.	2000 cycles (94%) ^a	[10]
H-Pd-3	1.80	1.80	1000 cycles 60% ^a	[11]
Pt2-PtTe2 HJNSAs/C	6.10	8.40	1.1 h (ca. 600 mA/mg) ^b	[12]
Pt/C@PL	1.19	2.86	500 cycles (1.19 A/mg) ^a	[13]
Pd85Cu15 NCs	2.20	4.40	50 cycles (51.6%) ^a	[14]
Ni-Co-Cu-Pd (NCCP)	1.09	0.07	100 cycles (75%) ^a	[15]
USCSD Au _{61.2} @Au _{27.3} Pt _{11.5} -NP/C	6.91	4.88	0.28 h (ca. 500 mA/mg) ^b	[16]
PdCuB Ngs/C	1.81	N.A.	1 h (177 mA/mg _{Pd}) ^b	[17]
PdNiCuP-A	0.74	3.12	100 cycles 53.1% ^a	[18]
Pd ₂ Ni ₁ /CNTs	3.35	N.A.	2 h (168 mA/mg) ^b	[19]

Table S1 Mass activity, specific activity and stability of nanocatalyst FAOR

Reaction condition: ^a The mass activity of a CV curve after a certain cycles of accelerated durability test (ADT); ^b the mass activity after a certain time of chronoamperometry (CA) test; ^c the mass activity of a CV curve after a certain time of CA test.

Table S2 Mass activity and stability of reported SACs in FAOR

Sample	Mass activity/(A·mg ⁻¹)	Stability	Ref.
SA-Rh/CN	16.1	44.5 h (16.1 A/mg) ^b 66.7 h (14.3 A/mg) ^b	[20]
Rh-SACs/HNCR	13.1	2.7 h (ca. 1.80 A/mg) °	[21]
SA-Ir/CN	12.9	10h (12.0 A/mg) ^b	[22]
IrN ₃ O	20.0	40 h (20.0 A/mg) ^b	[23]
Pt_1Au_{24}	3.70	1000 cycles (3.97 A/mg) ^a	[24]
Pt4Au96	3.77	N.A.	[25]
Pt ₁ /ATO	9.16	1800 cycles (48.7%) ^a	[26]

Reaction condition: ^a The mass activity of a CV curve after a certain cycles of accelerated durability test (ADT); ^b The mass activity of a CV curve after a certain time of CA test; ^c the mass activity after a certain time of CA test.

References

[1] KHAN I A, SOFIAN M, BADSHAH A, et al. Stable and efficient PtRu electrocatalysts supported on Zn-BTC MOF derived microporous carbon for formic acid fuel cells application [J]. Frontiers in Chemistry, 2020, 8: 367. DOI: 10.3389/fchem.2020.00367.

[2] HU Xin-rui, XIAO Zheng-yi, WANG Wei-zhen, et al. Platinum-lead-bismuth/platinum-bismuth core/shell nanoplate achieves complete dehydrogenation pathway for direct formic acid oxidation catalysis [J]. Journal of the American Chemical Society, 2023, 145(28): 15109–15117. DOI: 10.1021/jacs.3c00262.

[3] HUANG Shu-ke, LI Jun, WANG Xiao-sha, et al. Boosting the electrocatalytic formic acid oxidation activity via P-PdAuAg quaternary alloying [J]. ACS Applied Materials & Interfaces, 2023, 15(11): 14447–14456. DOI: 10.1021/acsa9mi.3c00708.

[4] HU Xin-rui, AN Zheng-chao, WANG Wei-zhen, et al. Sub-monolayer SbO_x on PtPb/Pt nanoplate boosts direct formic acid oxidation catalysis [J]. Journal of the American Chemical Society, 2023, 145(35): 19274–19282. DOI: 10.1021/jacs.3c04580.

[5] YANG Qi-yi, LIN Hua, WANG Xue-fei, et al. Dynamically self-assembled adenine-mediated synthesis of pristine graphene-supported clean Pd nanoparticles with superior electrocatalytic performance toward formic acid oxidation [J]. Journal of Colloid and Interface Science, 2022, 613: 515–523. DOI: 10.1016/j.jcis.2022.01.061.

[6] XU Min, ZHAO Yu-fei, CHEN Hong, et al. Role of ultrathin carbon shell in enhancing the performance of PtZn intermetallic nanoparticles as an anode electrocatalyst for direct formic acid fuel cells [J]. ChemElectroChem, 2019, 6(8): 2316–2323. DOI: 10.1002/celc.201900332.

[7] SHEN Wen, GE Lei, SUN Yu-yang, et al. Rhodium nanoparticles/F-doped graphene composites as multifunctional electrocatalyst superior to Pt/C for hydrogen evolution and formic acid oxidation reaction [J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33153–33161. DOI: 10.1021/acsami.8b09297.

[8] LIU Feng, ZHU Zhi-qiang, FAN Jin-chen, et al. Ternary PdMoP nanoparticles anchored on boron–nitrogen functionalized CNTs for highefficiency formic acid electrooxidation [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17587–17596. DOI: 10.1021/ acssuschemeng.0c07370.

[9] LU Chen-xi, YU Duo, YAN Zhi-guo, et al. Nitrogen and phosphorus self-doped carbon supported palladium as highly efficient electrocatalysts for formic acid oxidation [J]. International Journal of Electrochemical Science, 2021, 16(5): 210555. DOI: 10.20964/2021.05.37.

[10] FENG Rui-xue, LI Dong, YANG Hong-zhou, et al. Epitaxial ultrathin Pt atomic layers on CrN nanoparticle catalysts [J]. Advanced Materials, 2024, 36(9): e2309251. DOI: 10.1002/adma.202309251.

[11] HE Tian-ou, WANG Wei-cong, YANG Xiao-long, et al. Inflating hollow nanocrystals through a repeated Kirkendall cavitation process [J]. Nature Communications, 2017, 8(1): 1261. DOI: 10.1038/s41467-017-01258-0.

[12] DONG Cheng-yuan, WANG Xin-yao, ZHU Zhi-peng, et al. Highly selective synthesis of monoclinic-phased platinum-tellurium nanotrepang for direct formic acid oxidation catalysis [J]. Journal of the American Chemical Society, 2023, 145(28): 15393–15404. DOI: 10.1021/jacs.3c03317.

[13] GE Zi-xin, MIAO Bo-qiang, TIAN Xin-long, et al. Chemical functionalization of commercial Pt/C electrocatalyst towards formic acid electrooxidation [J]. Chemical Engineering Journal, 2023, 476: 146529. DOI: 10.1016/j.cej.2023.146529.

[14] DING Qing-wei, LUO Qing, LIN Liang, et al. Facile synthesis of PdCu nanocluster-assembled granular films as highly efficient electrocatalysts for formic acid oxidation [J]. Rare Metals, 2022, 41(8): 2595–2605. DOI: 10.1007/s12598-022-01997-0.

[15] KIM S J, CHOI S, KIM K M, et al. Hierarchical core-shell Ni-Co-Cu-Pd alloys for efficient formic acid oxidation reaction with high mass activity [J]. Applied Surface Science, 2022, 585: 152694. DOI: 10.1016/j.apsusc.2022.152694.

[16] CAO Yi, ZHANG Xiang, YUE Xin-ru, et al. Realization of the dehydrogenation pathway of formic acid oxidation by ultra-small coreshell Au-Pt nanoparticles with discrete Pt shells [J]. Materials Advances, 2022, 3(6): 2786–2792. DOI: 10.1039/D1MA01204E.

[17] YANG Fu-kai, FANG Yue, GONG Bing-tao, et al. Hollow cubic ternary PdCuB nanocage electrocatalysts with greatly enhanced catalytic performance for formic acid oxidation [J]. Chemical Communications, 2024, 60(6): 710–713. DOI: 10.1039/D3CC05183H.

[18] LIU Yun-wei, LIU Chang, CHEN Ze-lin, et al. Fabrication of amorphous PdNiCuP nanoparticles as efficient bifunctional and highly durable electrocatalyst for methanol and formic acid oxidation [J]. Journal of Materials Science & Technology, 2022, 122: 148–155. DOI: 10.1016/j.jmst.2021.12.047.

[19] YANG Ping-ping, ZHANG Li, WEI Xue-jiao, et al. A "special" solvent to prepare alloyed Pd₂Ni₁ nanoclusters on a MWCNT catalyst for enhanced electrocatalytic oxidation of formic acid [J]. Nanomaterials, 2023, 13(4): 755. DOI: 10.3390/nano13040755.

[20] XIONG Yu, DONG Jun-cai, HUANG Zheng-qing, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation [J]. Nature Nanotechnology, 2020, 15(5): 390–397. DOI: 10.1038/s41565-020-0665-x.

[21] HU Ye-zhou, CHEN Chang-sheng, SHEN Tao, et al. Hollow carbon nanorod confined single atom Rh for direct formic acid electrooxidation [J]. Advanced Science, 2022, 9(36): e2205299. DOI: 10.1002/advs.202205299.

[22] LI Zhi, CHEN Yuan-jun, JI Shu-fang, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy [J]. Nature Chemistry, 2020, 12(8): 764–772. DOI: 10.1038/s41557-020-0473-9.

[23] WANG Lei, JI Bi-fa, ZHENG Yong-ping, et al. Asymmetric coordination of iridium single-atom IrN₃O boosting formic acid oxidation catalysis [J]. Angewandte Chemie International Edition, 2023, 62(18): e202301711. DOI: 10.1002/anie.202301711.

[24] LU Yi-zhong, ZHANG Chun-mei, LI Xiao-kun, et al. Significantly enhanced electrocatalytic activity of Au25 clusters by single platinum atom doping [J]. Nano Energy, 2018, 50: 316–322. DOI: 10.1016/j.nanoen.2018.05.052.

[25] DUCHESNE P N, LI Z Y, DEMING C P, et al. Golden single-atomic-site platinum electrocatalysts [J]. Nature Materials, 2018, 17(11): 1033–1039. DOI: 10.1038/s41563-018-0167-5.

[26] KIM J, ROH C W, SAHOO S K, et al. Highly durable platinum single-atom alloy catalyst for electrochemical reactions [J]. Advanced Energy Materials, 2018, 8(1): 1701476. DOI: 10.1002/aenm.201701476.