Supporting information

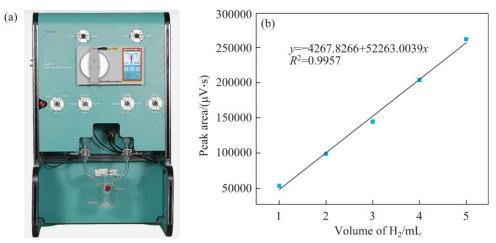


Figure S1 (a) Photocatalytic all-glass closed gas system (Labsolar-6A, PerfectLight); (b) Calibration curve of photocatalytic H_2 evolution

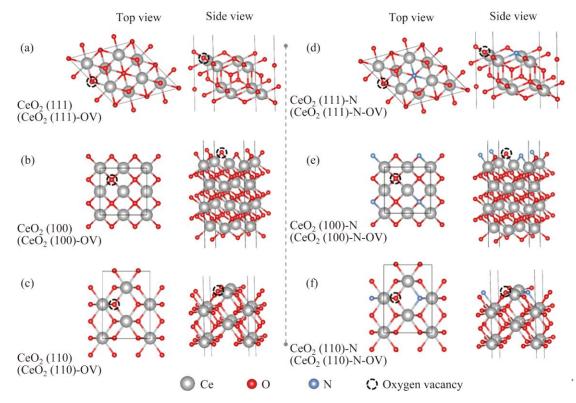
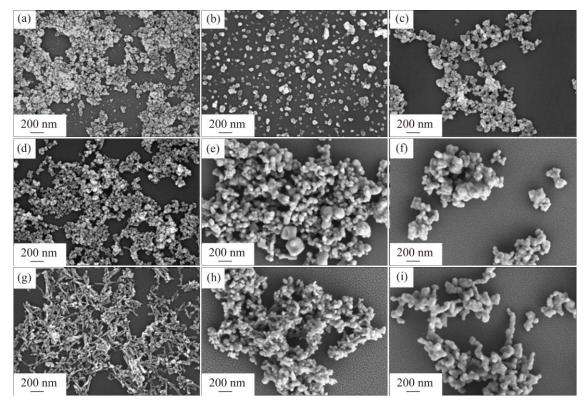



Figure S2 The top and side views of constructed CeO₂ (111), (100), and (110) surfaces

Figure S3 SEM images of P-CeO₂ (a), P-CeO₂-N₂ (b), and P-CeO₂-NH₃ (c), C-CeO₂ (d), C-CeO₂-N₂ (e), and C-CeO₂-NH₃ (f), R-CeO₂ (g), R-CeO₂-N₂ (h), and R-CeO₂-NH₃ (i)

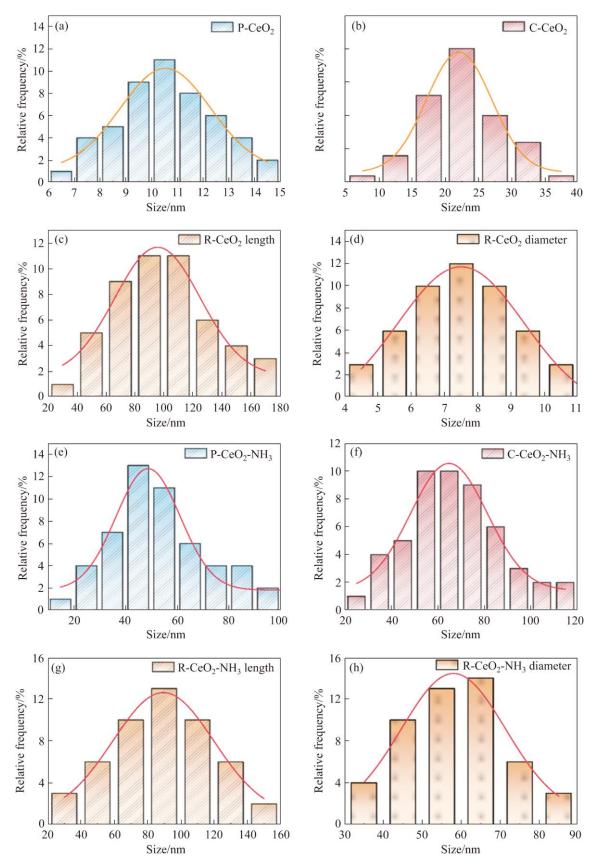


Figure S4 Particle size distribution of P-CeO₂ (a), C-CeO₂ (b), R-CeO₂ (c, d), P-CeO₂-NH₃ (e), C-CeO₂-NH₃ (f), and R-CeO₂-NH₃ (g, h)

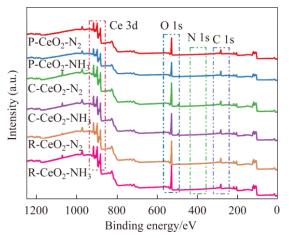


Figure S5 XPS spectra of prepared CeO₂

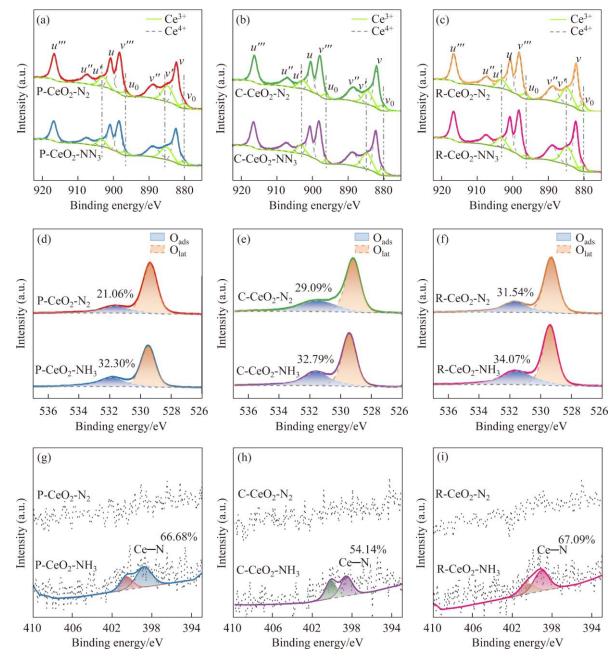
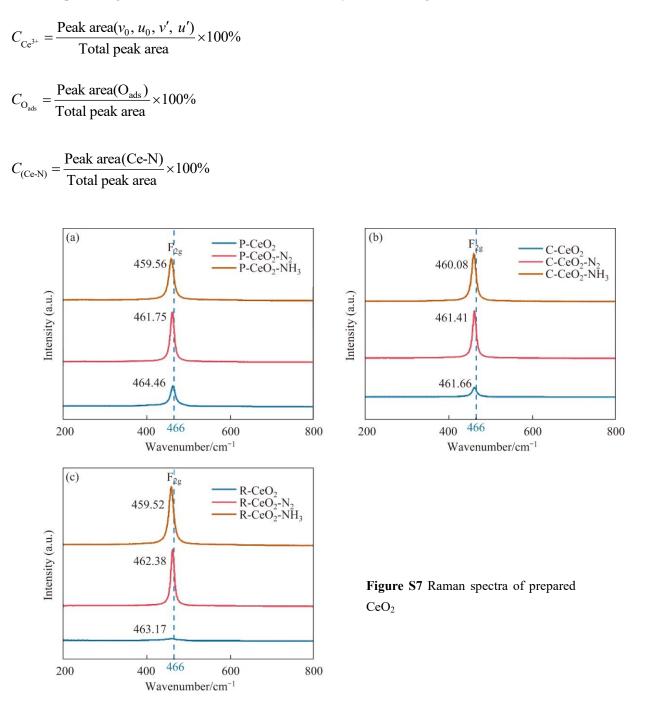



Figure S6 XPS results of the Ce 3d (a-c), O 1s (d-f), and N 1s (g-i) of N-doped CeO₂

The percentage of Ce³⁺ and O_{ads} can be calculated by the following formula [1]:

Due to the low concentration of the organic solution and weak adsorption, the photocatalytic kinetics followed the Langmuir-Hinshelwood model (L-H model) is [2]:

$$\ln \frac{c_0}{c} = kt$$

where k is the apparent rate constant, and t is the photocatalytic reaction time.

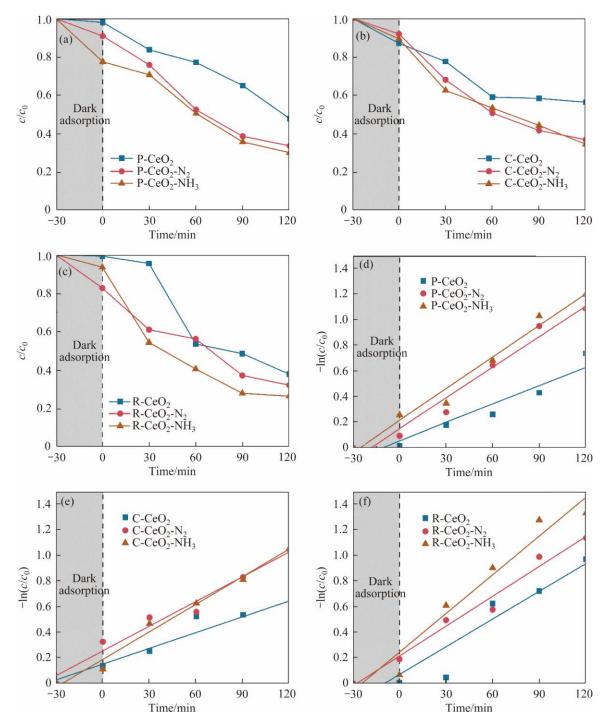
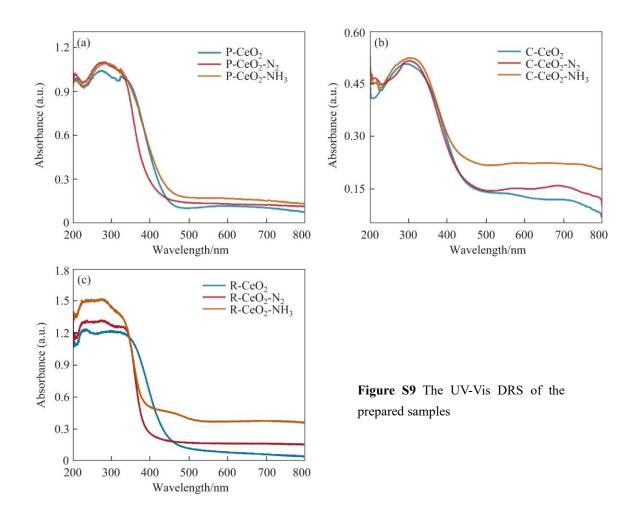



Figure S8 The photodegradation efficiency (c/c_0) and the fitted kinetics curves of TC by prepared CeO₂

The band gap is calculated by Tauc's formula [3]:

 $(\alpha hv)^n = A(hv - E_g)$

where α , h, v, A and E_g represent the absorption coefficient, Planck's constant, photon frequency, proportionality constant, and band gap of a semiconductor, respectively, and the value of n for CeO₂ with a direct band gap is 2 [4].

Then, the valence band (E_{vb}) can be calculated by formula:

 $E_{\rm vb} = E_{\rm cb} + E_{\rm g}$

Figure S10 The Kubelka-Munk plots (a-c) and Mott-Schottky plots (d-f) of the prepared samples (*C* is the electric capacity)

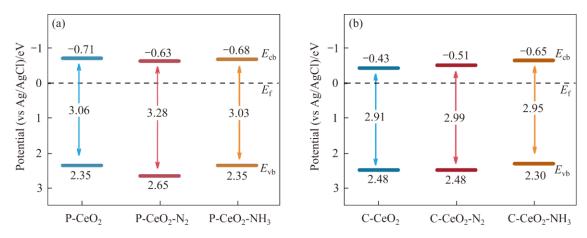


Figure S11 The potential diagrams of band structures of P-CeO₂ (a) and C-CeO₂ (b) systems

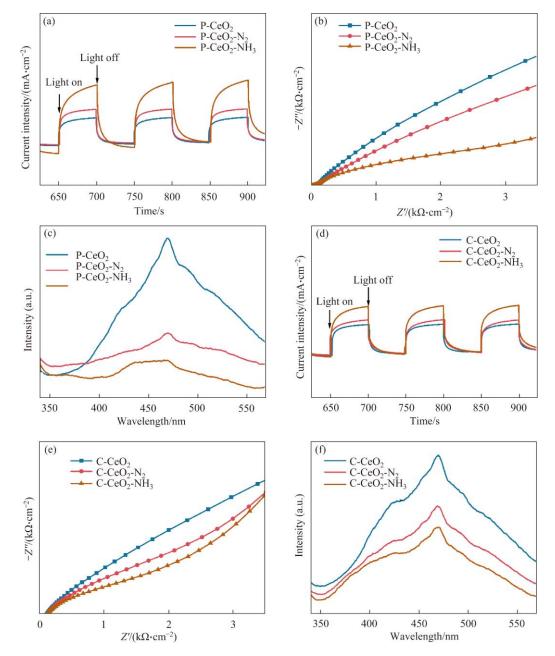
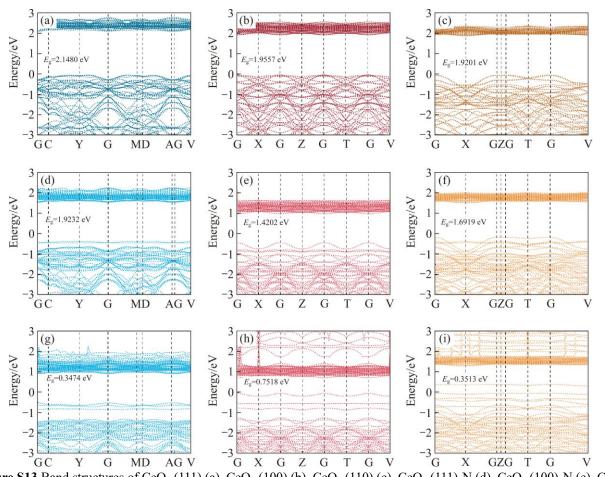



Figure S12 The photocurrent curves (a and d), impedance spectra (b and e), and PL spectra (c and f) of samples

Figure S13 Band structures of CeO₂ (111) (a), CeO₂ (100) (b), CeO₂ (110) (c), CeO₂ (111)-N (d), CeO₂ (100)-N (e), CeO₂ (110)-N (f), CeO₂ (111)-N-OV (g), CeO₂ (100)-N-OV (h), CeO₂ (110)-N-OV (i)

Table S1 The calculated Ce^{3+} , O_{ads} and Ce-N contents of XPS results

) 445		
Sample	CCe3+/%	$\mathcal{C}_{\mathrm{Oads}}/\mathrm{0}/\mathrm{0}$	$C_{Ce-N}/0/0$
P-CeO ₂ -N ₂	23.48	21.06	
P-CeO ₂ -NH ₃	24.35	32.30	66.68
C-CeO ₂ -N ₂	22.30	29.09	
C-CeO ₂ -NH ₃	23.33	32.79	54.14
R-CeO ₂ -N ₂	24.30	31.54	
R-CeO ₂ -NH ₃	25.08	34.07	67.09

$E_{\text{surf-N}}/\text{eV}$	$E_{\rm surf}/{ m eV}$	$E_{\rm O}/{\rm eV}$	$E_{\rm N}/{\rm eV}$	$E_{\rm form}/{\rm eV}$
-189.8195	-191.7122			3.2857
-188.4499	-190.2218	-1.6278	-3.0208	3.1649
-189.0781	-190.8074			3.1223
	-189.8195 -188.4499	-189.8195 -191.7122 -188.4499 -190.2218	-189.8195 -191.7122 -188.4499 -190.2218 -1.6278	-189.8195 -191.7122 -188.4499 -190.2218 -1.6278 -3.0208

Sample	$E_{ m surf}/ m eV$	$E_{ m surf-OV}/ m eV$	$\frac{1}{2}E_{O_2}/eV$	$E_{\rm OV}/{ m eV}$
CeO ₂ (111)	-191.7122	-184.8496	-4.8893	1.9733
CeO ₂ (111)-N	-189.8195	-183.3776		1.5526
CeO ₂ (100)	-190.2218	-183.4457		1.8868
CeO ₂ (100)-N	-188.4499	-182.0358		1.5248
CeO ₂ (110)	-190.8074	-183.8746		2.0435
CeO ₂ (110)-N	-189.0781	-182.7026		1.4862

Table S3 The DFT calculated energy of surface models and formation energy of oxygen vacancy

References

- WANG Fan, LI Jun-qi, CHEN Chao-yi, et al. Enhancement effects of surface and bulk oxygen vacancies on the photocatalytic properties of ceria [J]. Molecular Catalysis, 2023, 549: 113507. DOI: 10.1016/j.mcat.2023.113507.
- [2] LIU Bao-shun, ZHAO Xiu-jian, TERASHIMA C, et al. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems [J]. Physical Chemistry Chemical Physics, 2014, 16(19): 8751–8760. DOI: 10.1039/c3cp55317e.
- [3] ABOU EL-ENEIN S A, ALI A M, ABDEL-MONEM Y K, et al. Novel lanthanide(III) 4-methylbenzoylhydrazide complexes as precursors for lanthanide oxide nanophotocatalysts [J]. RSC Advances, 2019, 9(72): 42010–42019. DOI: 10.1039/c9ra08080e.
- [4] YASHODHA S R, DHANANJAYA N, MANJUNATH C. Synthesis and photoluminescence properties of Sm³⁺ doped LaOCl phosphor with reddish orange emission and it's Judd-Ofelt analysis [J]. Materials Research Express, 2020, 7(1): 015003. DOI: 10.1088/2053-1591/ab57a6.