
Supporting information

Supporting figures

Figure S1 Digital photos of (a) MMA-BA coating, (b) St-BA coating, (e) Commercially available MMA-BA coating and (f) Commercially available St-BA coating on Q235 carbon steel; (c) MMA-BA coating, (d) St-BA coating, (g) Commercially available MMA-BA coating and (h) Commercially available St-BA coating on 5052 aluminum alloy

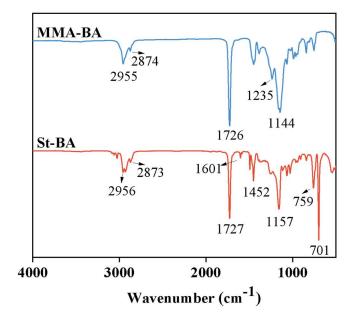


Figure S2 The FTIR spectra of MMA-BA and St-BA coatings

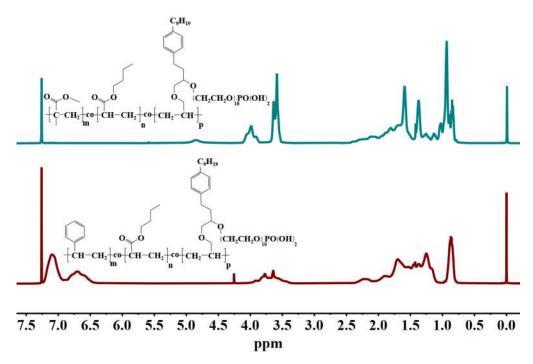


Figure S3 ¹H NMR spectra of MMA-BA and St-BA latexes

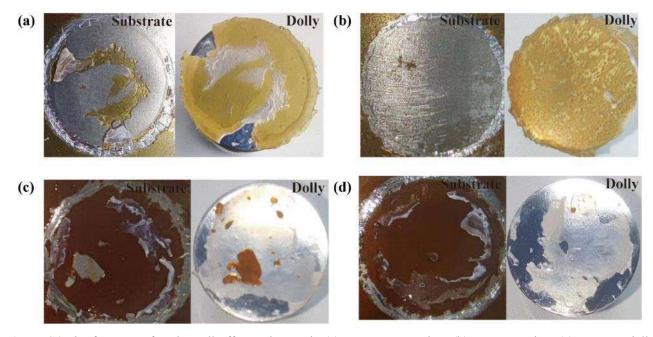
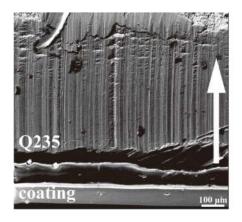



Figure S4 The fractures after the pull-off experiments in (a) MMA-BA coating. (b) St-BA coating. (c) Commercially available MMA-BA coating and (d) Commercially available St-BA coating coated on Q235 carbon steel

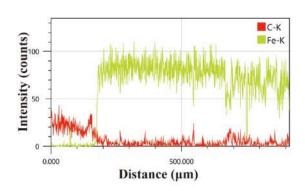
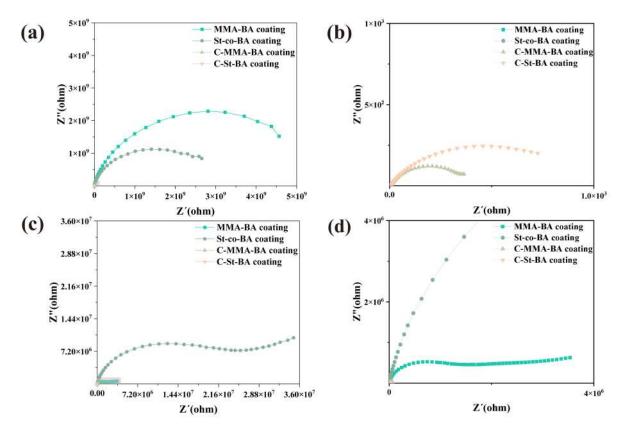
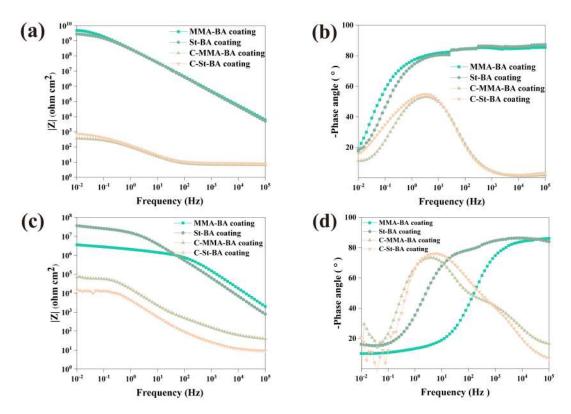




Figure S5 SEM diagram (left) and the corresponding element EDS diagram (right) of the MMA-BA coating on Q235 carbon steel

Figure S6 Nyquist plots of different coatings immersed in 3.5 wt% NaCl aqueous solution for 120 h. (a) Coatings on Q235 carbon steel; (b) An enlarged view of the Figure a; (c) Coatings on 5052-aluminum alloy; (d) An enlarged view of the Figure c

Figure S7 Bode plots of different coatings immersed in 3.5 wt% NaCl aqueous solution for 120 h. (a, b) Coatings on Q235 carbon steel; (c, d) Coatings on 5052 aluminum alloy

Table S1 Formulations for MMA-BA and St-BA latex preparation

	1 1		
Step	Component MMA-BA latex		St-BA latex
	MMA	31.300 g	_
	St	_	31.300 g
Seed emulsion	BA	31.300 g	31.300 g
polymerization	SLDED	0.630 g	0.630 g
	KPS	0.313 g	0.313 g
	NaHCO ₃	1.035 g	1.035 g
Pre-emulsion formation and polymerization	Monomer (MMA/BA or St/BA)	59.550 g	59.550 g
	$ANPEO_{10}$ - P_1	2.526 g	2.526 g
	KPS	0.163 g	0.163 g

Table S2 Appearance, calcium ion stability, gel content, solid content and conversion rate of MMA-BA and St-BA latexes

	Appearance	Calcium ion stability	Gel content	Solid content	Conversion rate
MMA-BA latex	Milky white	Pass	1.207%	50.22%	99.95%
St-BA latex	Milky white	Pass	1.348%	49.44%	98.34%

Table S3 The molecular weights of MMA-BA and St-BA latexes

	Number-average molecular weight/ $(g \cdot mol^{-1})$	Mass average molar mass/(g·mol ⁻¹)
St-BA latex	396733	731815
MMA-BA latex	281118	682999