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Text S1. Experimental investigation of the TMWs 

In the initial study, the mineral composition of the TMWs samples was identified using powder X-ray 

diffraction (XRD) [1]. The diffraction patterns were obtained with a Scingtag X1 automatic powder 

diffractometer and analyzed using JADE software (Material Data Inc.) along with standard reference patterns. 

To estimate the relative amounts of phases in the Rietveld refinement, Siroquant software was used for full-

profile XRD analysis[1], with an uncertainty of approximately ±5 wt% in the results. 

As for the sequential extraction, 1 g of the sample was taken at a time, which was air-dried, sieved to less 

than 2 mm and extracted sequentially with different reagents (Figure S1) [1]. The extracts and residues were 

analyzed by inductively coupled plasma mass spectrometry (ICPMS) [2] and hydride generation atomic 

absorption spectrometry (HG-AAS) [3] to obtain the percentage of morphological fractions in different samples. 

 

Text S2. Single machine learning algorithms 

 

S2.1 Decision tree (DT) 

DT is a tree structure based supervised learning technique that can solve classification problems as well as 

regression problems [4]. It progressively divides the dataset into subsets or nodes by selecting features and 

segmentation criteria with the aim of maximizing the purity of the target variable or minimizing the prediction 

error. When a termination node is reached or a termination condition is satisfied, the decision tree assigns a 

prediction value to each leaf node, which is usually the average of the values of the target variable of all training 

samples within that node [5]. Decision trees can handle regression prediction tasks in an intuitive and flexible 

way. 

 

S2.2 Support vector regression (SVR) 

SVR is a supervised regression model using the principles of support vector machines [6]. The core idea 

is to find the optimal hyperplane by maximizing the marginal distance between the data points and the 

hyperplane, allowing some of the data points to fall outside the margin. In addition, SVR utilizes nuclear 

techniques to implicitly perform nonlinear transformations in high-dimensional spaces to better fit complex data 

patterns [5]. 

 

S2.3 Ridge regression (Ridge) 

Ridge regression is a technique used to analyze regression data for multiple covariances, which are usually 

found in models with a large number of parameters. When multicollinearity is present, although the least squares 

estimates are unbiased, their variance is large, resulting in a large gap between the predicted and true values. To 

address this problem, ridge regression controls the magnitude of the coefficients by applying a penalty to the 

coefficients and minimizing the sum of squares of the residuals after the penalty. By introducing a modest bias 

in the regression estimates, ridge regression is able to reduce the standard errors and provide more stable and 

reliable estimates [7]. 

 

S2.4 K-nearest neighbors (KNN) 

KNN is one of the simplest machine learning algorithms [8]. Using supervised learning, KNN can be used 

to handle classification and regression problems on large sample data with short training time and low 

complexity [9]. The way it works is that when calculating the average, the nearest neighbor contributes more 

than the distant neighbor. If d is the distance between the node and its neighbor, then the weight of the neighbor 

is 1/d [10]. 



Text S3. Ensemble machine learning algorithms 

 

S3.1 Random forest (RF) 

RF uses random sampling of individual machine learning model predictions to construct multiple decision 

trees, which are then merged to generate ensemble predictions [11]. It constructs multiple trees by sampling a 

subset of the original dataset and randomly selecting a subset of features for node splitting [5]. A random subset 

of the training data and a random subset of the features are used to construct each tree. This randomization 

reduces overfitting and improves the generalizability of the model [12]. Instead of using only one predictor, the 

end result is to use the average of multiple predictors to improve accuracy, involving both classification and 

regression problems that can be solved with random forests [4]. 

 

S3.2 Extreme gradient boosting (XGBoost) 

The extreme gradient boosting (XGB) algorithm combines bagging-boosting with feature stochasticity to 

effectively mitigate the overfitting problem [13]. The difference between XGB and traditional GBDT is the 

introduction of a new objective function which combines the model’s loss function and regularization term to 

better control model complexity and improve generalization capabilities [5]. In this model, the decision tree 

divides the input data space into different regions by specific decision rules and achieves the integration effect 

by aggregating the outputs of multiple decision trees to build a model with complex features and interactions 

[14]. In addition, XGB employs an innovative sparse-aware learning algorithm to construct parallel trees, which 

improves the performance and accuracy of the model, especially when dealing with sparse datasets [15]. 

 

S3.3 Gradient boosting decision tree regression (GBDT) 

GBDT uses a decision tree as the base learner and optimizes in the negative gradient direction of the loss 

function by a gradient boosting method to train the model incrementally [5]. The goal is to improve the 

efficiency of regression trees by integrating them with gradient boosting algorithms [16]. In the prediction phase, 

GBDT obtains the final output by aggregating the weighted votes of all trees. The contribution of each tree 

usually depends on its effect on the model, with better performing trees being assigned greater weights. GBDT 

is particularly well suited for solving high-dimensional, complex and non-linear regression problems [5]. 

 

S3.4 Extremely randomized trees (ET) 

ExtraTrees is a machine learning integration method closely related to decision trees, similar to other 

integration techniques such as Bootstrap aggregation and random forests [15]. This tree-based approach, which 

is widely used in several domains, improves the accuracy of the results and the generalization of the model by 

introducing a high degree of randomness in the attributes and cut-points when splitting the tree nodes in order 

to ensure that each decision tree maintains structural differences [17]. 

 

S3.5 Categorical boosting (CATBoost) 

The category boosting tree algorithm is a GBDT optimization algorithm proposed in 2018, which can 

effectively handle category-based features and improve model performance without extensive preprocessing 

[18]. As the traditional one-shot coding may lead to dimensionality explosion, the CatBoost algorithm improves 

the features with a high number of categories by using a statistical method based on greedy objective-based 

approach, which is able to reduce the impact of noise as well as low-frequency category data on the data 

distribution [9]. 

 

S3.6 Natural gradient boosting (NGBoost) 

Natural gradient boosting is a supervised learning technique that aims to achieve probabilistic prediction 

through gradient boosting and natural gradient algorithms [19]. The natural gradient method takes into account 

the distributional properties of the parameter space and adapts to its geometric structure, thus improving the 

stability of the algorithm during training. NGBoost not only outputs the predicted values in a regression problem, 



but also directly outputs the probability distributions of the different predicted values, which makes it ideally 

suited for parameter optimization problems in engineering applications [20]. 

 

Table S1 Tuned hyper-parameters and their tuning ranges for ten ML algorithms 

ML model Hyper-parameter Range 

RF 

n_estimators 

max_depth 

min_samples_split 

min_samples_leaf 

[200, 300, 400, 500, 1000, 2000] 

[None, 5, 10, 15, 20] 

[2, 3, 5, 7] 

[2, 8, 15, 20] 

XGBoost 

n_estimators 

max_depth 

learning_rate 

[200, 300, 400, 500, 1000, 2000] 

[None, 5, 10, 15, 20] 

[0.01,0.1] 

GBDT 

n_estimators 

max_depth 

learning_rate min_samples_leaf 

[200, 300, 400, 500, 1000, 2000] 

[None, 5, 10, 15, 20] 

[0.01,0.1] 

[2, 8, 15, 20] 

ET 

n_estimators 

max_depth 

min_samples_split 

min_samples_leaf 

[200, 300, 400, 500, 1000, 2000] 

[None, 5, 10, 15, 20] 

[2, 3, 5, 7] 

[2, 8, 15, 20] 

CATBoost 

Iterations 

depth 

learning_rate 

[200, 500, 1000, 2000] 

[3, 6, 8, 10] 

[0.01,0.05,0.1,0.2] 

NGBoost 

n_estimators 

learning_rate 

natural_gradient 

[200, 300, 400, 500, 1000, 2000] 

[0.01,0.1] 

/ 

DT 

max_depth 

min_samples_split 

min_samples_leaf 

[None, 5, 10, 15, 20] 

[2, 3, 5, 7] 

[2, 8, 15, 20] 

SVR 

C 

gamma 

kernel 

[1,10,100] 

[0.02,0.1] 

/ 

Ridge 

alpha 

tol 

solver 

[1,2,4,6,8] 

[0.00001,0.001,0.01,0.1,1] 

/ 

KNN 

leaf_size 

n_neighbors 

algorithm 

[50,100,150,200,250] 

[2,4,6,8,10] 

/ 

 

 

 

  



Table S2 Optimal hyper-parameters and their R2 values on the test set 

Model Optimal hyper-parameter R2 

RF n_estimators=200; max_depth=none; min_samples_split=2; min_samples_leaf=2 0.9421 

XGBoost n_estimators=200; max_depth=10; learning_rate=0.1 0.9402 

GBDT 
n_estimators=500; max_depth=20; 

learning_rate=0.01; min_samples_leaf=8 
0.9433 

ET 
n_estimators=300; max_depth=20 

min_samples_split=2; min_samples_leaf=2 
0.9423 

CATBoost iterations=2000; depth=8; learning_rate=0.05 0.9389 

NGBoost 
n_estimators=300; learning_rate=0.01; 

natural_gradient=TRUE 
0.9070 

DT max_depth=15; min_samples_split=7; min_samples_leaf=2; 0.9195 

SVR C=100; gamma=0.1; kernel=poly; algorithm=auto 0.4576 

Ridge Alpha=8; tol=0.00001; solver=auto 0.4092 

KNN leaf_size=50; n_neighbors=10; 0.3089 

 

 

Figure S1 Schematic of sequential extraction procedure 
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