Supporting materials

Text S1. Experimental investigation of the TMWs

In the initial study, the mineral composition of the TMWs samples was identified using powder X-ray
diffraction (XRD) [1]. The diffraction patterns were obtained with a Scingtag X1 automatic powder
diffractometer and analyzed using JADE software (Material Data Inc.) along with standard reference patterns.
To estimate the relative amounts of phases in the Rietveld refinement, Siroquant software was used for full-
profile XRD analysis[1], with an uncertainty of approximately =5 wt% in the results.

As for the sequential extraction, 1 g of the sample was taken at a time, which was air-dried, sieved to less
than 2 mm and extracted sequentially with different reagents (Figure S1) [1]. The extracts and residues were
analyzed by inductively coupled plasma mass spectrometry (ICPMS) [2] and hydride generation atomic
absorption spectrometry (HG-AAS) [3] to obtain the percentage of morphological fractions in different samples.

Text S2. Single machine learning algorithms

S2.1 Decision tree (DT)

DT is a tree structure based supervised learning technique that can solve classification problems as well as
regression problems [4]. It progressively divides the dataset into subsets or nodes by selecting features and
segmentation criteria with the aim of maximizing the purity of the target variable or minimizing the prediction
error. When a termination node is reached or a termination condition is satisfied, the decision tree assigns a
prediction value to each leaf node, which is usually the average of the values of the target variable of all training
samples within that node [5]. Decision trees can handle regression prediction tasks in an intuitive and flexible
way.

S2.2 Support vector regression (SVR)

SVR is a supervised regression model using the principles of support vector machines [6]. The core idea
is to find the optimal hyperplane by maximizing the marginal distance between the data points and the
hyperplane, allowing some of the data points to fall outside the margin. In addition, SVR utilizes nuclear
techniques to implicitly perform nonlinear transformations in high-dimensional spaces to better fit complex data
patterns [5].

S2.3 Ridge regression (Ridge)

Ridge regression is a technique used to analyze regression data for multiple covariances, which are usually
found in models with a large number of parameters. When multicollinearity is present, although the least squares
estimates are unbiased, their variance is large, resulting in a large gap between the predicted and true values. To
address this problem, ridge regression controls the magnitude of the coefficients by applying a penalty to the
coefficients and minimizing the sum of squares of the residuals after the penalty. By introducing a modest bias
in the regression estimates, ridge regression is able to reduce the standard errors and provide more stable and
reliable estimates [7].

S2.4 K-nearest neighbors (KNN)

KNN is one of the simplest machine learning algorithms [8]. Using supervised learning, KNN can be used
to handle classification and regression problems on large sample data with short training time and low
complexity [9]. The way it works is that when calculating the average, the nearest neighbor contributes more
than the distant neighbor. If d is the distance between the node and its neighbor, then the weight of the neighbor
is 1/d [10].



Text S3. Ensemble machine learning algorithms

S3.1 Random forest (RF)

RF uses random sampling of individual machine learning model predictions to construct multiple decision
trees, which are then merged to generate ensemble predictions [11]. It constructs multiple trees by sampling a
subset of the original dataset and randomly selecting a subset of features for node splitting [5]. A random subset
of the training data and a random subset of the features are used to construct each tree. This randomization
reduces overfitting and improves the generalizability of the model [12]. Instead of using only one predictor, the
end result is to use the average of multiple predictors to improve accuracy, involving both classification and
regression problems that can be solved with random forests [4].

S3.2 Extreme gradient boosting (XGBoost)

The extreme gradient boosting (XGB) algorithm combines bagging-boosting with feature stochasticity to
effectively mitigate the overfitting problem [13]. The difference between XGB and traditional GBDT is the
introduction of a new objective function which combines the model’s loss function and regularization term to
better control model complexity and improve generalization capabilities [S]. In this model, the decision tree
divides the input data space into different regions by specific decision rules and achieves the integration effect
by aggregating the outputs of multiple decision trees to build a model with complex features and interactions
[14]. In addition, XGB employs an innovative sparse-aware learning algorithm to construct parallel trees, which
improves the performance and accuracy of the model, especially when dealing with sparse datasets [15].

S3.3 Gradient boosting decision tree regression (GBDT)

GBDT uses a decision tree as the base learner and optimizes in the negative gradient direction of the loss
function by a gradient boosting method to train the model incrementally [5]. The goal is to improve the
efficiency of regression trees by integrating them with gradient boosting algorithms [16]. In the prediction phase,
GBDT obtains the final output by aggregating the weighted votes of all trees. The contribution of each tree
usually depends on its effect on the model, with better performing trees being assigned greater weights. GBDT
is particularly well suited for solving high-dimensional, complex and non-linear regression problems [5].

S3.4 Extremely randomized trees (ET)

ExtraTrees is a machine learning integration method closely related to decision trees, similar to other
integration techniques such as Bootstrap aggregation and random forests [15]. This tree-based approach, which
is widely used in several domains, improves the accuracy of the results and the generalization of the model by
introducing a high degree of randomness in the attributes and cut-points when splitting the tree nodes in order
to ensure that each decision tree maintains structural differences [17].

S3.5 Categorical boosting (CATBoost)

The category boosting tree algorithm is a GBDT optimization algorithm proposed in 2018, which can
effectively handle category-based features and improve model performance without extensive preprocessing
[18]. As the traditional one-shot coding may lead to dimensionality explosion, the CatBoost algorithm improves
the features with a high number of categories by using a statistical method based on greedy objective-based
approach, which is able to reduce the impact of noise as well as low-frequency category data on the data
distribution [9].

S3.6 Natural gradient boosting (NGBoost)

Natural gradient boosting is a supervised learning technique that aims to achieve probabilistic prediction
through gradient boosting and natural gradient algorithms [19]. The natural gradient method takes into account
the distributional properties of the parameter space and adapts to its geometric structure, thus improving the
stability of the algorithm during training. NGBoost not only outputs the predicted values in a regression problem,



but also directly outputs the probability distributions of the different predicted values, which makes it ideally

suited for parameter optimization problems in engineering applications [20].

Table S1 Tuned hyper-parameters and their tuning ranges for ten ML algorithms

ML model Hyper-parameter Range
n_estimators [200, 300, 400, 500, 1000, 2000]
RF max_depth [None, 5, 10, 15, 20]
min_samples_split [2,3,5,7]
min_samples_leaf [2,8,15,20]
n_estimators [200, 300, 400, 500, 1000, 2000]
XGBoost max_depth [None, 5, 10, 15, 20]
learning_rate [0.01,0.1]
. [200, 300, 400, 500, 1000, 2000]
n_estimators
- [None, 5, 10, 15, 20]
GBDT max_depth
learning_rate min_samples_leaf [0.01,0.1]
[2,8,15,20]
n_estimators [200, 300, 400, 500, 1000, 2000]
ET max_depth [None, 5, 10, 15, 20]
min_samples_split [2,3,5,7]
min_samples_leaf [2,8,15,20]
Iterations [200, 500, 1000, 2000]
CATBoost depth [3,6,8,10]
learning_rate [0.01,0.05,0.1,0.2]
n_estimators [200, 300, 400, 500, 1000, 2000]
NGBoost learning_rate [0.01,0.1]
natural gradient /
max_depth [None, 5, 10, 15, 20]
DT min_samples_split [2,3,5,7]
min_samples_leaf [2,8,15,20]
C [1,10,100]
SVR gamma [0.02,0.1]
kernel /
alpha [1,2,4,6,8]
Ridge tol [0.00001,0.001,0.01,0.1,1]
solver /
leaf size [50,100,150,200,250]
KNN n_neighbors [2,4,6,8,10]

algorithm

/




Table S2 Optimal hyper-parameters and their R? values on the test set

Model Optimal hyper-parameter R?
RF n_estimators=200; max_depth=none; min_samples_split=2; min_samples_leaf=2 0.9421
XGBoost n_estimators=200; max_depth=10; learning_rate=0.1 0.9402
GBDT caming a0.01 i s a3 09433
ET n_estimators=300; max_depth=20 0.9423

min_samples_split=2; min_samples_leaf=2
CATBoost iterations=2000; depth=8; learning_rate=0.05 0.9389
n_estimators=300; learning_rate=0.01;

NGBoost natural_gradient=TRUE 0.9070
DT max_depth=15; min_samples_split=7; min_samples_leaf=2; 0.9195
SVR C=100; gamma=0.1; kernel=poly; algorithm=auto 0.4576
Ridge Alpha=38; tol=0.00001; solver=auto 0.4092
KNN leaf size=50; n_neighbors=10; 0.3089
Step 1: Step 2: Step 3:
1.0 g sample 25 mL 0.1 mol/L KH,PO, 25 mL 15% acetic acid 25 mL 0.1 mol/L Na,P,0;
agitate 2 h, agilate 2 h. agitate 1 h, decant, repeat.
Extract 1 Extract 2 Extract 3
Soluble, adsorbed, & Carbonate fraction Organic fraction
exchangeable fraction
Step 5: Step 4:
20 mL 1.0 mol/L NH,OH-HCI-25% CH,COOH 25 mL 0.25 mol/L NH,OH-HCI-0.10 mol/L HCL
3 h at 90 °C, rinse, repeat for 1.5 h. 30 min at 50 °C
Extract 5 Extract 4
crystalline Fe-oxides amorphous Fe- & Al-hydroxides &
amorphous & crystalline Mn-oxides
172 . .
. Digested Residue 5
Concentrated acids total sulfides/selenide &
residual (silicales)
172 Step 6:
10 mL HCL and 0.5 g KCIO; Step 7:
45 min, rinse, Concentrated acids
/NP 10 mL HNO,
20 min at 90 °C, rinse
Volatile sulfides/
selenides l
(Extract 6, e—Residue 5-Residue 6) Extract 7=Digested Residue 6
sulfides/selenides residual (silicates)

Figure S1 Schematic of sequential extraction procedure
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