Supplementary materials

Table S1 Simulated input parameters of each functional layer of Sb₂S₃ solar cell with perovskite nanogaps

Reference	Thickness/	Width/nm	Band gap/eV	Electron affinity/eV	Dielectric permittivity (relative)	CB effective density of states, N_c/cm^{-3}	VR effective density
Spiro-MeOT AD [1, 2]	80		3	2.2	3	2.2×10 ¹⁸	1.8×10 ¹⁹
MAPbI ₃ [2, 3]	400 (nanogaps)/ 40 (Non- nanogaps)	50	1.59	4.2	6.5	1.66×10 ¹⁹	5.41×10 ¹⁹
Sb_2S_3 [2, 4]	400	500	1.65	3.7	7	2×10 ¹⁹	1×10 ¹⁹
TiO ₂ [1]	100		3.28	4	9	2×10^{18}	1×10^{19}
Reference	Electron mobility/ (cm ² ·V ⁻¹ ·s ⁻¹)	Hole mobility/ (cm ² ·V ⁻¹ ·s ⁻¹)	Donor concentration, $N_{\rm d}/{\rm cm}^{-3}$	Acceptor concentration, N_a /cm ⁻³	Total defeats concentration, $N_{\rm t}/{\rm cm}^{-3}$	Radiative recombination coefficient, $B_{\rm rad}/({\rm cm}^3 \cdot {\rm s}^{-1})$	Auger recombination coefficient, $(A_n/A_p)/(cm^6 \cdot s^{-1})$
Spiro-MeOT AD [1, 2]	2.1×10 ⁻³	1.39×10 ⁻⁴	_	1×10 ¹⁸	1×10 ¹⁶	_	_
MAPbI ₃ [2, 3]	0.38	0.65	_	1×10^{15} (nanogaps)/ 1×10^{18} (non-nanogaps)	1×10 ¹⁵	3.27×10 ⁻¹¹	0.88×10^{-29}
Sb_2S_3 [2, 4]	10	2.6	_	1×10 ¹⁵	1×10^{18}	_	_
TiO ₂ [1]	20	10	1.0×10^{17}	_	1×10^{16}	_	_

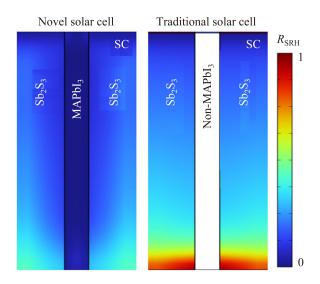
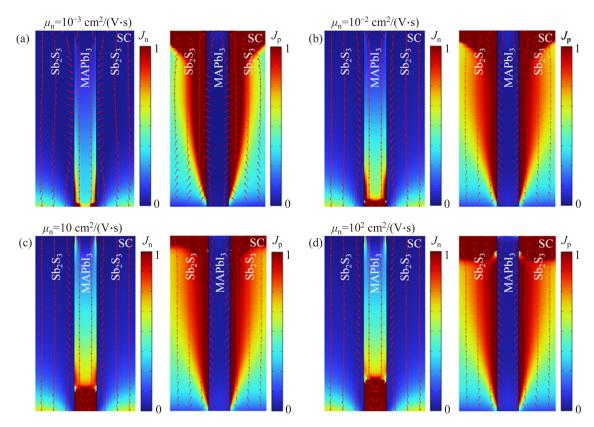



Figure S1 Normalized SRH recombination rate (R_{SRH}) distribution profiles of the novel and traditional Sb₂S₃ solar cells

Figure S2 Electron and hole current density distributions under different electron mobilities: (a) 10^{-3} cm²/(V·s); (b) 10^{-2} cm²/(V·s); (c) 10 cm²/(V·s); (d) 10^{2} cm²/(V·s) ($\mu_p = \mu_n/2$), where arrows denote the extraction directions of electrons and holes

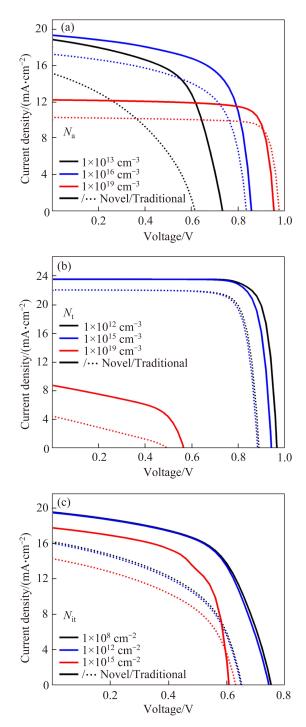
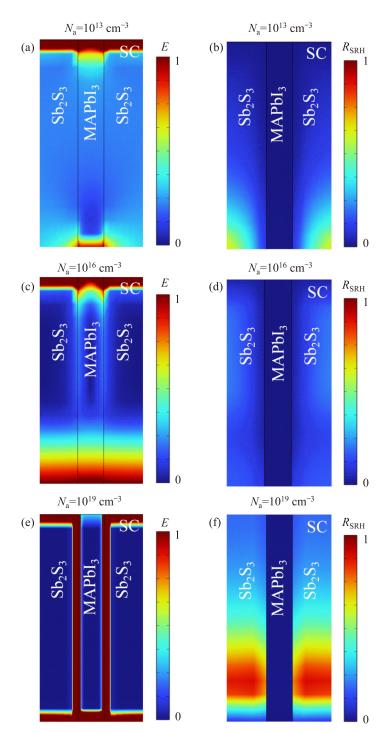
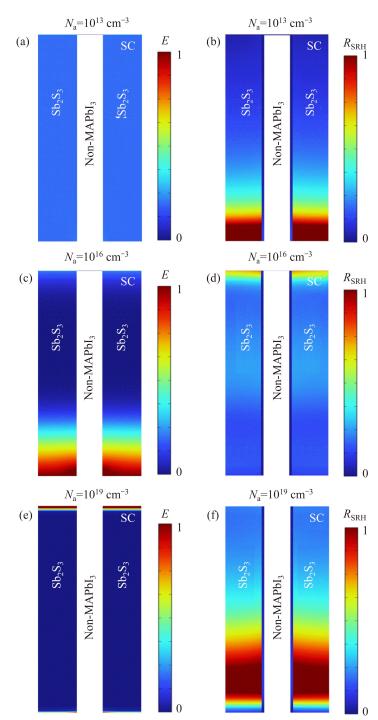




Figure S3 (a) J-V curves under representative N_a values; (b) J-V curves under representative N_t values; (c) J-V curves under representative N_{it} values

Figure S4 Distribution profiles of (a) electric field intensity (*E*) and (b) SRH recombination rate (R_{SRH}) in the novel Sb₂S₃ solar cell at N_a =10¹³ cm⁻³; Distribution profiles of (c) electric field intensity and (d) SRH recombination rate in the novel solar cell at N_a =10¹⁶ cm⁻³; Distribution profiles of (e) electric field intensity and (f) SRH recombination rate in the novel structure at N_a =10¹⁹ cm⁻³

Figure S5 Distribution profiles of (a) electric field intensity and (b) SRH recombination rate in the traditional Sb₂S₃ solar cell at N_a =10¹³ cm⁻³; Distribution profiles of (c) electric field intensity and (d) SRH recombination rate in the traditional Sb₂S₃ solar cell at N_a =10¹⁶ cm⁻³; Distribution profiles of (e) electric field intensity and (f) SRH recombination rate in the traditional Sb₂S₃ solar cell at N_a =10¹⁹ cm⁻³

The calculation formulas of photo-generated carriers

The photo-generated carriers rate $g(x, y, z, \lambda)$ in this model is expressed as follows [5]:

$$P_{S}(x, y, z, \lambda) = \sqrt{|P_{Sx}(x, y, z, \lambda)|^{2} + |P_{Sy}(x, y, z, \lambda)|^{2} + |P_{Sz}(x, y, z, \lambda)|^{2}}$$
(1)

$$P_{Sx}(x, y, z, \lambda) = \frac{1}{2} \text{Re}(E_y H_z^* - E_z H_y^*)$$
 (2)

$$P_{Sy}(x, y, z, \lambda) = \frac{1}{2} \text{Re}(E_z H_x^* - E_x H_z^*)$$
(3)

$$P_{Sz}(x, y, z, \lambda) = \frac{1}{2} \text{Re}(E_x H_y^* - E_y H_x^*)$$
 (4)

where P_{Sx} , P_{Sy} and P_{Sz} are the power flux components in the x, y and z directions, respectively; E/H is the frequency and spatially dependent electric/magnetic field; 'Re' and '*' are the operators used to obtain the real component and the complex conjugate, respectively. Therefore, the spatially dependent generation (G) can be expressed as:

$$G(x, y, z) = \int_{\lambda_{\min}}^{\lambda_{\max}} g(x, y, z, \lambda) d\lambda$$
 (5)

In Eq. (6), λ_{min} and λ_{max} are the minimum and maximum values of the absorption wavelength, which were taken as 300 and 1200 nm, respectively.

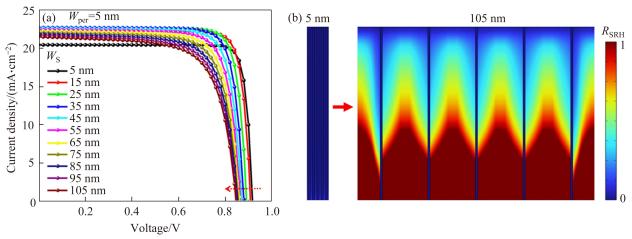


Figure S6 (a) J-V curves under varying Sb₂S₃ widths (W_S) with the perovskite width (W_{per}) fixed at 5 nm; (b) Evolution of the SRH recombination rate distribution as W_S increases from 5 nm to 105 nm

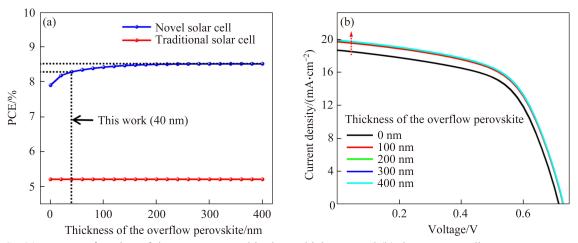


Figure S7 (a) PCE as a function of the excess perovskite layer thickness, and (b) the corresponding J-V curves

Table S2 Simulated PCE for different nanogap materials

Material	χ/eV	$E_{ m g}/{ m eV}$	PCE/%
C ₆₀	3.9	1.7	6.64
PCBM	3.9	2	7.22
$MAPbI_3$	4.2	1.59	8.35
$CuSbS_2$	4.2	1.58	8.17
CuO	4.07	1.51	7.73
WS_2	3.95	1.8	6.84
$CsSnCl_3$	3.90	1.52	6.78
Sb_2S_3	3.7	1.65	6.13
ICBA	3.7	2	6.15

References

- [1] LI Gui-jin, GUO Fang-fang, ZHOU Xi-lin, et al. Design and simulation of Sb₂S₃ solar cells based on monolayer graphene as electron transport layer [J]. Optical Materials, 2021, 112: 110791. DOI: 10.1016/j.optmat.2020.110791.
- [2] LI Xiao-feng, HYLTON N P, GIANNINI V, et al. Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations [J]. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 109–120. DOI: 10.1002/pip.2159.
- [3] HOSSAIN M K, TOKI G F I, KUDDUS A, et al. An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl₃-based perovskite solar cells [J]. Scientific Reports, 2023, 13(1): 2521. DOI: 10.1038/s41598-023-28506-2.
- [4] ZHU Liang-xin, LIU Rong, WAN Zhi-yang, et al. Parallel planar heterojunction strategy enables Sb₂S₃ solar cells with efficiency exceeding 8% [J]. Angewandte Chemie International Edition, 2023, 62(50): e202312951. DOI: 10.1002/anie.202312951.
- [5] ZANDI S, RAZAGHI M. Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification [J]. Solar Energy, 2019, 179: 298–306. DOI: 10.1016/j.solener.2018.12.032.